scHOOL

IMT | ek apvancio
STUDIES
LuccA

A proof theoretic framework for process verification

Cosimo Perini Brogi
IMT School for Advanced Studies Lucca

Joint work with Rocco De Nicola (CNR, Pisa) & Omar Inverso (GSSI, L'Aquila)

PACMAN 2 Workshop
May 14 — 16, 2025
UniRoma3

Finanziato % Ministero .
dall'Unione europea (J dell'Universita -'.l' Italiadomani

NextGenerationEU "5 edella Ricerca BANERAT oM enza

| SERICS

Work supported by the project SERICS - PE0000014, financed within PNRR, M4C2 1.1.3, funded by the
European Union - NextGenerationEU

General framework

Main goal

Apply proof-theoretic tools and techniques to formal verification of generally specified
concurrent programs

General framework ,Mj‘

Main goal
Apply proof-theoretic tools and techniques to formal verification of generally specified
concurrent programs)

How to reach it
> Exploit the interplay between (non-classical) logics, process algebras/calculi and labelled
transition systems
» From the particular to the general, starting with well-established specification systems for

process calculi
£

scHOOL
FOR ADVANCED
STUDIES

LuccA

Stirling’s research question]|

Theoretical Computer Science 49 (1987) 311-347 311
North-Holland

MODAL LOGICS FOR COMMUNICATING SYSTEMS

Colin STIRLING
Department of Computer Science, Edinburgh University, Edinburgh EH8 9YL, Scotland, U.K.

Abstract. Simple modal logics for Milner's SCCS and CCS are presented. We offer sound and
complete axiomatizations of validity relative to these calculi as models. Alsa we present composi-
tional proof systems for when a program satisfies a formula. These involve proof rules which are
like Gentzen introduction rules except that there are also introduction rules for the program
combinators of SCCS and CCS. The compositional rules for restriction (or hiding) and parallel
combinators arise out of a simple semantic strategy.

Verification of modular processes should be modular

“[Clompositional, syntax-directed proof systems” for verifying properties of concurrent systems

expressed in the language of modal logics
J

Simpson’s answer

IMT E?J‘n‘?“w”’

omeor —
:c:s-c:C CILEES S ey
Sl
r “The Journal of Logic a PROGRAMMING
ELSEVIER

Algebraic Programming 60-61 (z\ma 287322

www.elsevier.com/locatefjlap

Sequent calculi for process verification:
Hennessy—Milner logic for an arbitrary GSOS*

Alex Simpson
Laboratory for Foundations of Compute
King’s Buildi

of Informatics, Universiiy of Edinburgh,
reh EH9 317, UK

Abstract

We argue that, by supporting a mixture of “compositional” and “structural” styles of proof,
sequent-based proof systems provide a useful framework for the formal verification of processes.
As a worked example, we present M&A{utnlwlullu\ foresablishing that processes sty sserions

woduction rules, on the |

a geneic proof system applicable

in the GSOS format. Using a general alg
theorem for the cut-free fragment of the p
cut rule. Under mild (and necessany) conditions on ths prooses algel
relative (0 the “intended” model of closed process terms, follows.

an -completeness resul,

Verification of modular processes can be modular and natural

[Clompositional, structural and naturalness aspects of sequent-based proof follow from

properties of the basic sequent calculus [..
to their logical properties [. ..

sequent calculus.”

.] [It is possible] to relate processes (or programs)
] without breaking the fundamental structural properties of

Our improvement T

A more principled approach

Apply contemporary proof-theoretic techniques to enhance Simpson’s idea and uniformly obtain
a new family of modular sequent calculi for logical verification of concurrent processes.
The motto, after (Dyckhoff and Negri 2015), is

“Keep left & Geometrize!”

Our improvement T

STUDIES

A more principled approach

Apply contemporary proof-theoretic techniques to enhance Simpson’s idea and uniformly obtain
a new family of modular sequent calculi for logical verification of concurrent processes.
The motto, after (Dyckhoff and Negri 2015), is

“Keep left & Geometrize!”

Results
» Constructive cut-elimination from calculi for Hennessy-Milner logic and GSOS processes

» Substantial simplification of Simpson’s proofs for structural and semantic completeness of
this kind of calculi)

STUDIES

Outline @:;ﬁiscm

Introduction
Technical preliminaries
Proof system design and analysis

Conclusion

Concurrent processes

P2 read()
L~ |

h

(a) Concurrent but not parallel

P1 —{ read() (on Ry1) }
P2 —{ read() (on Ry) }

(b) Parallel but not concurrent

h

v

p1 write(0) read()

p2 { read() H write(1) P

(c) Concurrent and parallel

~

Concurrent processes

Example from informatics

I
takel
rk
1

HasL

Dining philosophers problem (WikiMedia, CC-BY-SA-3.0)

scHOOL

IMT | ek apvancio
STUDIES
LuccA

ADT Philosopher ADT Fork

Sort philo Sort fork

Use fork ops

Ops £0: » fork

p0: » philo £: fork + fork
p: philo » phile Axioms

1ftF: philo » fork
rghtf: philo + fork

£(£(£0))=£0

wWith fk : fork

philoOf : fork - philo
Axioms

p(p(po))=p0
1FLF(p0)=£0

1£LF(p(ph))=£ (LELF (ph))
rghtF (p0)=£(£0)

rghtF (p(ph))=f(rghtF(ph))
philOf(£0)=p0

philOE (£ (£k))=p(philOf(fk))

With ph : philo, fk : fork

Concurrent processes T

STUDIES
LuccA

Example from biology

Starlings flocks, murmuration (WikiMedia, CC-BY-SA-2.0)

Concurrent processes T

Lucca

Example from. ..

In-game screenshot, (WikiMedia, CC-BY-3.0)

STUDIES
LuccA

Process calculi Mj‘:;::scm
Key insight

Hoare's and Milner’s proposal

Process calculi provide a syntactic characterisation of concurrent programs that is based on
process operators building new process behaviours from simpler ones

To describe processes, focus on interactions!
Yy

Process calculi

Semantics for concurrent systems

Definition (LTS)

A labelled transition system T := (T, A;,—) consists of
» a set of states T,
> a set of actions A, (including a “silent” 7), and

» a mapping — from actions to pair of states.

IMT |5
e

scHOOL
FOR ADVANCED
STUDIES

Process calculi

GSOS
By l1<i<nl<j<m} U x5 |[1<i<nl<k<{}
f(X) = p(X,¥)
where:
» f is an operator on states;
> the x;'s and the y;'s (1 </ <nand 1< j<m;)are all distinct state variables;
» n, m; and ¢; are natural numbers;
> p(X,y) is a state term with variables including at most the x;'s and y;;'s; and
> the uj's, vik's and 7 are actions from A..

LuccA

Behavioural equivalence T
Via structural semantics
Using the structural semantics, labelled transition systems are rigorously associated to

concurrent processes:
Just consider T := (T, A, —), where — applied to y is the least relation on T generated by

the rules of the structural semantics.

Behavioural equivalence T
Via structural semantics

Using the structural semantics, labelled transition systems are rigorously associated to

concurrent processes:
Just consider T := (T, A, —), where — applied to y is the least relation on T generated by

the rules of the structural semantics.

When are two processes observationally identifiable?

Two states are bisimilar (and we write p ~ q) when there exists a bisimulation R such that

pRq.)

Behavioural equivalence T
Via structural semantics
Using the structural semantics, labelled transition systems are rigorously associated to

concurrent processes:
Just consider T := (T, A, —), where — applied to y is the least relation on T generated by

the rules of the structural semantics.

When are two processes observationally identifiable?

Two states are bisimilar (and we write p ~ g) when there exists a bisimulation R such that

pRq.)

Quotienting LTS over ~ provides a semantics of processes that focuses of (some) external
behaviour of processes, abstracting from their specific identity.

Behavioural equivalence
Via logic

Definition (Hennessy-Milner logic)

Formulas of HM are defined by the following grammar:
AEFrmyy =T | 7A| AAB| (WA,

where p € A;, = and A denote classical negation and conjunction, resp.

Now, given the LTS (T,.4,,—), we can define a standard notion of local forcing as follows:
» pl-T forany pe T,
> plk-Aiff plf A
» pl-F AABiff plF Aand pl+ B;
> p Ik (u)A iff there exists a g € T such that p = g and q I A.

Behavioural equivalence T

STUDIES
LuccA

Bisimulation invariant logic

Theorem (Hennessy and Milner 1985)

Let’s say that a state p of an LTS T is finitely branching if the set of states that are reachable
in T from p is finite.
Then, given two finitely branching states p, q

p =~ q iff, for any A € Frm,, plF A iffq - A2

?The finite branching condition can be discarded if infinite conjunctions are allowed in the basic language.

Principled design T

Basic language

Our proof system G3HMLgqos is based on the explicit internalisation of GSOS process algebras
in standard sequent calculi.

Principled design

Basic language

scHOOL

IMT | ek apvancio
STUDIFS
LuccA

Our proof system G3HMLgqos is based on the explicit internalisation of GSOS process algebras

in standard sequent calculi.
We work with labelled formulas with shape:

Positive transitional Negative transitional Congruence
—— —— g
“ —~
pq p 7 | P=gq

Structural atoms

p:A
—~—

Forcing atoms

STUDIFS
LuccA

Principled design T

Basic language

Our proof system G3HMLgqos is based on the explicit internalisation of GSOS process algebras
in standard sequent calculi.
We work with labelled formulas with shape:

Positive transitional Negative transitional Congruence
—— —~— g
: P=q : A
pq p 7 | pP=q | p:
——
Structural atoms Forcing atoms

Sequents of G3HMLgos are expressions [= A, where I, A are finite multisets of labelled
formulas, and structural atoms may occur only in I

Principled design

Logical rules

M= A p:A

p-AT=A

p:Ap:BIT=A
p:ANB, T = A

M= Ap:T KT
p:AT=A R
FT=A,p:=A
N=Ap:A F:A,p:BR
F=ApAAB "
p=q,l = A p:(u)A q:A
RO

p=q,l = Ap (A

Principled design T

STUDIES

Compositional rules

By l1<i<nl<j<m) u (A [1<i<nl<k<}

Principled design T
Compositional rules
{x2yll<i<nmi<j<m} U {xP |1<i<nl<k<l}
f(x) = p(X,¥)

Geometrize!

(o)v:y;[(A) e (X,.;z;))D(f(;):,,,(;,y))]

1<i<n,1<j<m; 1<i<n,1<k<l;

SIEnix>

CONZES [(f(F) “2)D (3)7: pE) =2 & N (ny) & . /1\<k<[(ri 7))]

I ix> >SI> SK>

Principled design T
Compositional rules

(B yil1<i<nl<j<m} U (A [1<i<nl<k<}

=\

F(x) = p(X,¥)

Geometrize!

(O)VY,Y:[< A iy & A (Xf%))D(f(?)gp(iyﬂ))]

1<i<nl<j<m; 1<i<n,1<k<?;

(oo)vaz:[(f(f)ﬁz)a(ay:pw)—z& A Sy e A (#))]

1<i<n,1<j<m; 1<i<n,1<k<4;

Keep left!

F(7) 5 p(%.7), {x = yi} {X.%} r=a
— fo pApgl=A
2y, B Tr=A

1<i<n,1<j<m; 1<i<n,1<k<¢;

{Ph(y) =z, {r,gyj}, {x 51, F)—>zr:>A}

1<i<n,1<j<m; 1<i<n,1<k<l;

B Def

<+ Rules for =-repl.

fr) > zlT=A

Worked-out examples T

Choice, top-down

™,
s —P 7P~ B) s (ptg S p)

~s Praopipop T=A
p=p,IT=A

SUMo1

Worked-out examples T

STUDIES
LuccA

Choice, bottom-up

Koo Koo
sog — PP g, 979 A
p+qg=p p+qg=4
AN

(P+qg 5 x) > ((x=p)A(PH X)) V((x=4)A (g5 x)

x=p,phx,prqgx,IT=A x=q, g5 x,p+qg L x,T=A

SUMoo

p+qgtx,IT=A

Main results 'E

Theorem
G3HML ;405 satisfies the following properties:
Soundness: If the sequent I = A is derivable, then T E A

Completeness: If the sequent I = A is not derivable, then it is possible to extract from the
failed proof search an LTS-countermodel to I = A

Structural completeness:

» Generalised initial sequents are derivable
» Substitution rule for states over variables are height-preserving admissible
» Weakening rules are height preserving admissible

» All the rules are height-preserving invertible

» Contraction rules are height-preserving admissible

Cut elimination: The cut rule can be effectively eliminated

Put in perspective T

» Substantial refinement of Simpson'’s original labelled sequent calculi for GSOS
» More principled formalisation and approach to verification of GSOS processes
» Our cut elimination algorithm as basic result for automation of verification tasks

Put in

SO OO vy

perspective IME‘

Substantial refinement of Simpson'’s original labelled sequent calculi for GSOS
More principled formalisation and approach to verification of GSOS processes

Our cut elimination algorithm as basic result for automation of verification tasks

Future extensions with more expressive logics
Modular extensions for more general process formats
Implementation of terminating proof-search strategies (for decidable settings)

Development of tools for proof-based process verification and analysis

Put in perspective T

SO OC O vVYYY

STUDIES
LuccA

Substantial refinement of Simpson'’s original labelled sequent calculi for GSOS
More principled formalisation and approach to verification of GSOS processes

Our cut elimination algorithm as basic result for automation of verification tasks

Future extensions with more expressive logics

Modular extensions for more general process formats

Implementation of terminating proof-search strategies (for decidable settings)
Development of tools for proof-based process verification and analysis

Many thanks for listening!

cosimo.perinibrogi@imtlucca.it

Process calculi ,E;:,::ssm
CCS

STUDIES
LuccA

Aot ———— p5q p=k
NO RULES FOR 0 H DEF dul .
H-P =P k5 q tl\)/lno tr?eos{(:usghcrtéogfsp and q!
N -
REN P) q RES P m 9 ¢l
plf] = qlf] P gL
~, / /
Sum; f SuM;, :7
p+q-=p p+q—=dq
Aop! Mg’ Ay Y
Comy pﬂip/ CoM, qﬂiq/ Coms p—p . q /4) q
pla = p'lq pla = plq pla = p'lq

Worked-out examples

Communication, top-down

i> /
coms — TP (05) 5 (plg 2 plq)
pla = p'lq))
~s Plg=Plgpop T=A
pLp I=A

COMo1

Worked-out examples

Communication, top-down

/

p=>p 959 A

P (p = P) A (g) = (plg = P'ld")
pla = p'lq

CoMs

~s PlaSpld PSP gSq T=A
p3p.qg>q.T=A

COMo3

Worked-out examples T

STUDIFS

Communication, bottom-up

CoM; + CoMz + Coms V2 (plg B z) = Bx,p B xAz=x|q)V (3y,q S y Az=ply)

(Plg=2) = (@x,pHxAz=x|q)V(Ey,q 5 yAz=ply)

&
V(Hxﬂy,p@x/\qu/\zzﬂy)
n I I I
x|lg=z,p = x z,= A =z z,= A
’\/‘% |q y P 7p|q_> = p|.y 7q_>.y7p|q_> = COMool(!x,!y)
plg &z, T = A
& xlg=z,p 5 x,plg 5 2,7 = A ply=2,95 y,plg 5z, = A X|Y51vPAX’qEY’P|qLZ’réA CoMg 02(1x, ly)

p\qu,l':>A

Terminating proof-search T
GSOS operators

Working example

x 5 x! x /A (forall v > p)
O(x) = 6(x)

Non-working example

TEH A Xy “ i
f(x) = x W c>0 c = f(c)

HOLMS Libra ry @:;:mm

STUDIES

Mechanised modal reasoning in HOL Light

. . . Multimodal extensions
HOL Light Tutorial GL Library

o . » ~
7 / % / HOLMS .
2006< 2 2019 2021 2023 2025 ’

First integration of modal reasoning in HOL Light
Underlying methodology

Axiomatic calculus <<= Frame class characterising modal schemas
A

A

~ ~
Decision procedure < Labelled sequent calculus

.. shallow embedding === formalised adequacy theorems
Parametric Ad-hoc Polimorphic

