
A proof theoretic framework for process verification

Cosimo Perini Brogi
IMT School for Advanced Studies Lucca

Joint work with Rocco De Nicola (CNR, Pisa) & Omar Inverso (GSSI, L’Aquila)

PACMAN 2 Workshop
May 14th → 16th, 2025

UniRoma3

Work supported by the project SERICS - PE0000014, financed within PNRR, M4C2 I.1.3, funded by the

European Union - NextGenerationEU

General framework

Main goal

Apply proof-theoretic tools and techniques to formal verification of generally specified
concurrent programs

General framework

Main goal

Apply proof-theoretic tools and techniques to formal verification of generally specified
concurrent programs

How to reach it
▶ Exploit the interplay between (non-classical) logics, process algebras/calculi and labelled

transition systems

▶ From the particular to the general, starting with well-established specification systems for
process calculi

Stirling’s research question

Verification of modular processes should be modular

“[C]ompositional, syntax-directed proof systems” for verifying properties of concurrent systems
expressed in the language of modal logics

Simpson’s answer

Verification of modular processes can be modular and natural

“[C]ompositional, structural and naturalness aspects of sequent-based proof follow from
properties of the basic sequent calculus [. . .] [It is possible] to relate processes (or programs)
to their logical properties [. . .] without breaking the fundamental structural properties of
sequent calculus.”

Our improvement

A more principled approach

Apply contemporary proof-theoretic techniques to enhance Simpson’s idea and uniformly obtain
a new family of modular sequent calculi for logical verification of concurrent processes.
The motto, after (Dyckhoff and Negri 2015), is

“Keep left & Geometrize!”

Our improvement

A more principled approach

Apply contemporary proof-theoretic techniques to enhance Simpson’s idea and uniformly obtain
a new family of modular sequent calculi for logical verification of concurrent processes.
The motto, after (Dyckhoff and Negri 2015), is

“Keep left & Geometrize!”

Results
▶ Constructive cut-elimination from calculi for Hennessy-Milner logic and GSOS processes

▶ Substantial simplification of Simpson’s proofs for structural and semantic completeness of
this kind of calculi

Outline

Introduction

Technical preliminaries

Proof system design and analysis

Conclusion

Concurrent processes

p1 write(0) write(1)

p2 read()

(a) Concurrent but not parallel

p1 read() (on R1)

p2 read() (on R2)

(b) Parallel but not concurrent

p1 write(0) read()

p2 read() write(1)

(c) Concurrent and parallel

Concurrent processes
Example from informatics

Dining philosophers problem (WikiMedia, CC-BY-SA-3.0)

Concurrent processes
Example from biology

Starlings flocks, murmuration (WikiMedia, CC-BY-SA-2.0)

Concurrent processes
Example from. . .

In-game screenshot, (WikiMedia, CC-BY-3.0)

Process calculi
Key insight

Hoare’s and Milner’s proposal

Process calculi provide a syntactic characterisation of concurrent programs that is based on
process operators building new process behaviours from simpler ones

To describe processes, focus on interactions!

Process calculi
Semantics for concurrent systems

Definition (LTS)

A labelled transition system T := ⟨T ,Aτ ,→⟩ consists of
▶ a set of states T ,

▶ a set of actions Aτ (including a “silent” τ), and

▶ a mapping → from actions to pair of states.

Process calculi
GSOS

{xi
µij→ yij | 1 ≤ i ≤ n, 1 ≤ j ≤ mi} ∪ {xi ̸

νik→ | 1 ≤ i ≤ n, 1 ≤ k ≤ ℓi}
f (x⃗)

π→ p(x⃗ , y⃗)

where:

▶ f is an operator on states;

▶ the xi ’s and the yij ’s (1 ≤ i ≤ n and 1 ≤ j ≤ mi) are all distinct state variables;

▶ n, mi and ℓi are natural numbers;

▶ p(x⃗ , y⃗) is a state term with variables including at most the xi ’s and yij ’s; and

▶ the µij ’s, νik ’s and π are actions from Aτ .

Behavioural equivalence
Via structural semantics

Using the structural semantics, labelled transition systems are rigorously associated to
concurrent processes:
Just consider T := ⟨T ,Aτ ,→⟩, where → applied to µ is the least relation on T generated by
the rules of the structural semantics.

Behavioural equivalence
Via structural semantics

Using the structural semantics, labelled transition systems are rigorously associated to
concurrent processes:
Just consider T := ⟨T ,Aτ ,→⟩, where → applied to µ is the least relation on T generated by
the rules of the structural semantics.

When are two processes observationally identifiable?

Two states are bisimilar (and we write p ≃ q) when there exists a bisimulation R such that
pRq.

Behavioural equivalence
Via structural semantics

Using the structural semantics, labelled transition systems are rigorously associated to
concurrent processes:
Just consider T := ⟨T ,Aτ ,→⟩, where → applied to µ is the least relation on T generated by
the rules of the structural semantics.

When are two processes observationally identifiable?

Two states are bisimilar (and we write p ≃ q) when there exists a bisimulation R such that
pRq.

Quotienting LTS over ≃ provides a semantics of processes that focuses of (some) external
behaviour of processes, abstracting from their specific identity.

Behavioural equivalence
Via logic

Definition (Hennessy-Milner logic)

Formulas of HM are defined by the following grammar:

A ∈ FrmHM ::= ⊤ | ¬A | A ∧ B | ⟨µ⟩A,

where µ ∈ Aτ , ¬ and ∧ denote classical negation and conjunction, resp.

Now, given the LTS ⟨T ,Aτ ,→⟩, we can define a standard notion of local forcing as follows:

▶ p ⊩ ⊤ for any p ∈ T ;

▶ p ⊩ ¬A iff p ̸⊩ A;

▶ p ⊩ A ∧ B iff p ⊩ A and p ⊩ B;

▶ p ⊩ ⟨µ⟩A iff there exists a q ∈ T such that p
µ→ q and q ⊩ A.

Behavioural equivalence
Bisimulation invariant logic

Theorem (Hennessy and Milner 1985)

Let’s say that a state p of an LTS T is finitely branching if the set of states that are reachable
in T from p is finite.
Then, given two finitely branching states p, q

p ≃ q iff, for any A ∈ FrmHM , p ⊩ A iff q ⊩ A.a

aThe finite branching condition can be discarded if infinite conjunctions are allowed in the basic language.

Principled design
Basic language

Our proof system G3HMLGSOS is based on the explicit internalisation of GSOS process algebras
in standard sequent calculi.

Principled design
Basic language

Our proof system G3HMLGSOS is based on the explicit internalisation of GSOS process algebras
in standard sequent calculi.
We work with labelled formulas with shape:

Positive transitionalz }| {
p

µ→ q |
Negative transitionalz }| {

p ̸ µ→ |
Congruencez }| {
p ≡ q| {z }

Structural atoms

| p : A|{z}
Forcing atoms

Principled design
Basic language

Our proof system G3HMLGSOS is based on the explicit internalisation of GSOS process algebras
in standard sequent calculi.
We work with labelled formulas with shape:

Positive transitionalz }| {
p

µ→ q |
Negative transitionalz }| {

p ̸ µ→ |
Congruencez }| {
p ≡ q| {z }

Structural atoms

| p : A|{z}
Forcing atoms

Sequents of G3HMLGSOS are expressions Γ ⇒ ∆, where Γ,∆ are finite multisets of labelled
formulas, and structural atoms may occur only in Γ.

Principled design
Logical rules

R⊤
Γ ⇒ ∆, p :⊤

Γ ⇒ ∆, p :A
L¬

p :¬A, Γ ⇒ ∆

p :A, Γ ⇒ ∆
R¬

Γ ⇒ ∆, p :¬A

p :A, p :B , Γ ⇒ ∆
L∧

p :A ∧ B , Γ ⇒ ∆

Γ ⇒ ∆, p :A Γ ⇒ ∆, p :B
R∧

Γ ⇒ ∆, p :A ∧ B

p
µ→ y , y : A, Γ ⇒ ∆

L3(!y)
p :⟨µ⟩A, Γ ⇒ ∆

p
µ→ q, Γ ⇒ ∆, p :⟨µ⟩A, q :A

R3

p
µ→ q, Γ ⇒ ∆, p :⟨µ⟩A

Principled design
Compositional rules

{xi
µij→ yij | 1 ≤ i ≤ n, 1 ≤ j ≤ mi} ∪ {xi ̸

νik→ | 1 ≤ i ≤ n, 1 ≤ k ≤ ℓi}
f (x⃗)

π→ p(x⃗ , y⃗)

Principled design
Compositional rules

{xi
µij→ yij | 1 ≤ i ≤ n, 1 ≤ j ≤ mi} ∪ {xi ̸

νik→ | 1 ≤ i ≤ n, 1 ≤ k ≤ ℓi}
f (x⃗)

π→ p(x⃗ , y⃗)

Geometrize!

(◦) ∀x⃗ , y⃗ :

"
V

1≤i≤n,1≤j≤mi

(xi
µij→ yij) &

V
1≤i≤n,1≤k≤ℓi

(xi ̸
νik→)

!
⊃ (f (x⃗)

π→ p(x⃗ , y⃗))

#

(◦◦) ∀r⃗ , z :

"
(f (r⃗)

π→ z) ⊃

∃y⃗ : p(r⃗ , y⃗) ≡ z &

V
1≤i≤n,1≤j≤mi

(ri
µij→ yij) &

V
1≤i≤n,1≤k≤ℓi

(ri ̸
νik→)

!#

Principled design
Compositional rules

{xi
µij→ yij | 1 ≤ i ≤ n, 1 ≤ j ≤ mi} ∪ {xi ̸

νik→ | 1 ≤ i ≤ n, 1 ≤ k ≤ ℓi}
f (x⃗)

π→ p(x⃗ , y⃗)

Geometrize!

(◦) ∀x⃗ , y⃗ :

"
V

1≤i≤n,1≤j≤mi

(xi
µij→ yij) &

V
1≤i≤n,1≤k≤ℓi

(xi ̸
νik→)

!
⊃ (f (x⃗)

π→ p(x⃗ , y⃗))

#

(◦◦) ∀r⃗ , z :

"
(f (r⃗)

π→ z) ⊃

∃y⃗ : p(r⃗ , y⃗) ≡ z &

V
1≤i≤n,1≤j≤mi

(ri
µij→ yij) &

V
1≤i≤n,1≤k≤ℓi

(ri ̸
νik→)

!#

Keep left!

f (x⃗)
π→ p(x⃗ , y⃗), {xi

µij→ yij}
1≤i≤n,1≤j≤mi

, {xi ̸
νik→ }

1≤i≤n,1≤k≤ℓi

, Γ ⇒ ∆

f ◦
{xi

µij→ yij}
1≤i≤n,1≤j≤mi

, {xi ̸
νik→ }

1≤i≤n,1≤k≤ℓi

, Γ ⇒ ∆

̸ µ→Def

p ̸ µ→ , p
µ→ q, Γ ⇒ ∆

(
ph(r⃗ , y⃗) ≡ z , {ri

µij→ yij}
1≤i≤n,1≤j≤mi

, {xi ̸
νik→ }

1≤i≤n,1≤k≤ℓi

, f (r⃗)
π→ z , Γ ⇒ ∆

)

1≤h≤N
f ◦◦(!⃗y)

f (r⃗)
π→ z , Γ ⇒ ∆

+ Rules for ≡-repl.

Worked-out examples
Choice, top-down

p
µ→ p′

Sum1

p + q
µ→ p′

⇝ (p
µ→ p′) → (p + q

µ→ p′)

⇝ p + q
µ→ p′, p

µ→ p′, Γ ⇒ ∆
Sum◦1

p
µ→ p′, Γ ⇒ ∆

Worked-out examples
Choice, bottom-up

p
µ→ p′

Sum1

p + q
µ→ p′

+
q

µ→ q′
Sum2

p + q
µ→ q′

⇝
(p + q

µ→ x) → ((x ≡ p′) ∧ (p
µ→ x)) ∨ ((x ≡ q′) ∧ (q

µ→ x)) ⇝
x ≡ p′, p

µ→ x , p + q
µ→ x , Γ ⇒ ∆ x ≡ q′, q

µ→ x , p + q
µ→ x , Γ ⇒ ∆

Sum◦◦
p + q

µ→ x , Γ ⇒ ∆

Main results

Theorem
G3HMLGSOS satisfies the following properties:

Soundness: If the sequent Γ ⇒ ∆ is derivable, then Γ ⊨ ∆

Completeness: If the sequent Γ ⇒ ∆ is not derivable, then it is possible to extract from the
failed proof search an LTS-countermodel to Γ ⇒ ∆

Structural completeness:

▶ Generalised initial sequents are derivable
▶ Substitution rule for states over variables are height-preserving admissible
▶ Weakening rules are height preserving admissible
▶ All the rules are height-preserving invertible
▶ Contraction rules are height-preserving admissible

Cut elimination: The cut rule can be effectively eliminated

Put in perspective

▶ Substantial refinement of Simpson’s original labelled sequent calculi for GSOS

▶ More principled formalisation and approach to verification of GSOS processes

▶ Our cut elimination algorithm as basic result for automation of verification tasks

Put in perspective

▶ Substantial refinement of Simpson’s original labelled sequent calculi for GSOS

▶ More principled formalisation and approach to verification of GSOS processes

▶ Our cut elimination algorithm as basic result for automation of verification tasks

3 Future extensions with more expressive logics

3 Modular extensions for more general process formats

3 Implementation of terminating proof-search strategies (for decidable settings)

3 Development of tools for proof-based process verification and analysis

Put in perspective

▶ Substantial refinement of Simpson’s original labelled sequent calculi for GSOS

▶ More principled formalisation and approach to verification of GSOS processes

▶ Our cut elimination algorithm as basic result for automation of verification tasks

3 Future extensions with more expressive logics

3 Modular extensions for more general process formats

3 Implementation of terminating proof-search strategies (for decidable settings)

3 Development of tools for proof-based process verification and analysis

Many thanks for listening!

cosimo.perinibrogi@imtlucca.it

Process calculi
CCS

No rules for 0
Act

µ.p
µ→ p

p
µ→ q p ≜ k

Def
k

µ→ q

p
µ→ q

Ren

p[f]
f (µ)→ q[f]

p
µ→ q

Res µ,µ/∈L

p\L
µ→ q\L

p
µ→ p′

Sum1

p + q
µ→ p′

q
µ→ q′

Sum2

p + q
µ→ q′

p
µ→ p′

Com1

p|q µ→ p′|q
q

µ→ q′
Com2

p|q µ→ p|q′
p

λ→ p′ q
λ→ q′

Com3

p|q τ→ p′|q′

Modulo restrictions
on the structure of p and q!

Worked-out examples
Communication, top-down

p
µ→ p′

Com1

p|q µ→ p′|q
⇝ (p

µ→ p′) → (p|q µ→ p′|q)

⇝ p|q µ→ p′|q, p µ→ p′, Γ ⇒ ∆
Com◦1

p
µ→ p′, Γ ⇒ ∆

Worked-out examples
Communication, top-down

p
λ→ p′ q

λ→ q′
Com3

p|q τ→ p′|q′
⇝ (p

λ→ p′) ∧ (q
λ→ q′) → (p|q τ→ p′|q′)

⇝ p|q τ→ p′|q′, p λ→ p′, q
λ→ q′, Γ ⇒ ∆

Com◦3

p
λ→ p′, q

λ→ q′, Γ ⇒ ∆

Worked-out examples
Communication, bottom-up

Com1 +Com2 +Com3 ⇝ (p|q µ→ z) → (∃x , p µ→ x ∧ z ≡ x |q) ∨ (∃y , q µ→ y ∧ z ≡ p|y)

&
(p|q τ→ z) → (∃x , p τ→ x ∧ z ≡ x |q) ∨ (∃y , q τ→ y ∧ z ≡ p|y)

∨(∃x∃y , p λ→ x ∧ q
λ→ y ∧ z ≡ x |y)

⇝ x |q ≡ z , p
µ→ x , p|q µ→ z , Γ ⇒ ∆ p|y ≡ z , q

µ→ y , p|q µ→ z , Γ ⇒ ∆
Com◦◦1(!x,!y)

p|q µ→ z , Γ ⇒ ∆

&
x|q ≡ z, p

τ→ x, p|q τ→ z, Γ ⇒ ∆ p|y ≡ z, q
τ→ y, p|q τ→ z, Γ ⇒ ∆ x|y ≡ z, p

λ→ x, q
λ→ y, p|q τ→ z, Γ ⇒ ∆

Com◦◦2(!x,!y)
p|q τ→ z, Γ ⇒ ∆

Terminating proof-search
GSOS operators

Working example

x
µ→ x ′ x ̸ ν→ (for all ν > µ)

θ(x)
µ→ θ(x ′)

Non-working example

f (x)
µ→ x

x
µ→ y

f (x)
µ→ f (x ′) c

µ→ 0 c
µ→ f (c)

HOLMS Library
Mechanised modal reasoning in HOL Light

HOLMS

First integration of modal reasoning in HOL Light

Multimodal extensions
HOL Light Tutorial GL Library

2006≤ . . .
2019 2021 2023 2025

Underlying methodology

Axiomatic calculus ks +3 Frame class characterising modal schemas
OO

��

Decision procedure
��

OO

Labelled sequent calculusoo

.... shallow embedding === formalised adequacy theorems
Parametric Ad-hoc Polimorphic

