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Stirling’s research question

Verification of modular processes should be modular
“[C]ompositional, syntax-directed proof systems” for verifying properties of concurrent
systems expressed in the language of modal logics



Simpson’s answer

Verification of modular processes can be modular and natural
“[C]ompositional, structural and naturalness aspects of sequent-based proof follow from
properties of the basic sequent calculus [. . . ] [It is possible] to relate processes (or
programs) to their logical properties [. . . ] without breaking the fundamental structural
properties of sequent calculus.”



Our improvement

A more principled approach
Apply contemporary proof-theoretic techniques to enhance Simpson’s idea and uniformly
obtain a new family of modular sequent calculi for logical verification of concurrent
processes: The motto is

“Keep left & Geometrize!”

Results
▶ Constructive cut-elimination from calculi for Hennessy-Milner logic and GSOS

processes
▶ Substantial simplification of Simpson’s proofs for structural and semantic

completeness of this kind of calculi
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GSOS
Integration in sequents

{xi
µij→ yij | 1 ⩽ i ⩽ n, 1 ⩽ j ⩽ mi} ∪ {xi ̸

νik→ | 1 ⩽ i ⩽ n, 1 ⩽ k ⩽ ℓi}

f(⃗x)
π→ p(⃗x, y⃗)

Consequences of Simpson’s approach
◦ Cut admissibility and completeness require ad hoc conditions on assumable sequents
◦ Purely semantic proof of cut admissibility



GSOS
Our rules

{xi
µij→ yij | 1 ⩽ i ⩽ n, 1 ⩽ j ⩽ mi} ∪ {xi ̸

νik→ | 1 ⩽ i ⩽ n, 1 ⩽ k ⩽ ℓi}

f(⃗x)
π→ p(⃗x, y⃗)

Geometrize!

(◦) ∀x⃗, y⃗ :

[( ∧
1⩽i⩽n,1⩽j⩽mi

(xi
µij→ yij) &

∧
1⩽i⩽n,1⩽k⩽ℓi

(xi ̸
νik→ )

)
⊃ (f(⃗x)

π→ p(⃗x, y⃗))

]

(◦◦) ∀⃗r, y⃗, z :

[
(f(⃗r)

π→ z) ⊃

(
∃y⃗ : p(⃗r, y⃗) ≡ z &

∧
1⩽i⩽n,1⩽j⩽mi

(ri
µij→ yij) &

∧
1⩽i⩽n,1⩽k⩽ℓi

(ri ̸
νik→ )

)]

Keep left!

f(⃗x)
π→ p(⃗x, y⃗), {xi

µij→ yij}
1⩽i⩽n,1⩽j⩽mi

, {xi ̸
νik→ }

1⩽i⩽n,1⩽k⩽ℓi

, Γ ⇒ ∆

f◦
{xi

µij→ yij}
1⩽i⩽n,1⩽j⩽mi

, {xi ̸
νik→ }

1⩽i⩽n,1⩽k⩽ℓi

, Γ ⇒ ∆

̸ µ→Def
p ̸ µ→ ,p µ→ q, Γ ⇒ ∆

{
ph(⃗r, y⃗) ≡ z, {ri

µij→ yij}
1⩽i⩽n,1⩽j⩽mi

, {xi ̸
νik→ }

1⩽i⩽n,1⩽k⩽ℓi

, f(⃗r) π→ z, Γ ⇒ ∆

}
1⩽h⩽N

f◦◦(!y⃗)

f(⃗r)
π→ z, Γ ⇒ ∆

+ Rules for ≡-repl.
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Main results

Theorem
G3HMLGSOS satisfies the following properties:

Soundness: If the sequent Γ ⇒ ∆ is derivable, then Γ ⊨ ∆

Completeness: If the sequent Γ ⇒ ∆ is not derivable, then it is possible to extract from the failed
proof search an LTS-countermodel to Γ ⇒ ∆

Structural completeness:
▶ Generalised initial sequents are derivable
▶ Substitution rule for states over variables are height-preserving admissible
▶ Weakening rules are height preserving admissible
▶ All the rules are height-preserving invertible
▶ Contraction rules are height-preserving admissible

Cut elimination: The cut rule can be effectively eliminated



Put in perspective

▶ Substantial refinement of Simpson’s original labelled sequent calculi for GSOS
▶ More principled formalisation and approach to verification of GSOS processes
▶ Our cut elimination algorithm as basic result for automation of verification tasks

3 Future extensions with more expressive logics
3 Modular extensions for more general process formats
3 Implementation of certified theorem provers (and countermodel constructors)

Many thanks for listening!



Put in perspective

▶ Substantial refinement of Simpson’s original labelled sequent calculi for GSOS
▶ More principled formalisation and approach to verification of GSOS processes
▶ Our cut elimination algorithm as basic result for automation of verification tasks

3 Future extensions with more expressive logics
3 Modular extensions for more general process formats
3 Implementation of certified theorem provers (and countermodel constructors)

Many thanks for listening!



Put in perspective

▶ Substantial refinement of Simpson’s original labelled sequent calculi for GSOS
▶ More principled formalisation and approach to verification of GSOS processes
▶ Our cut elimination algorithm as basic result for automation of verification tasks

3 Future extensions with more expressive logics
3 Modular extensions for more general process formats
3 Implementation of certified theorem provers (and countermodel constructors)

Many thanks for listening!

cosimo.perinibrogi@imtlucca.it


	Introduction
	Rules
	Results
	Conclusion

