
An overview of Simple Type Theory
Graduate Seminar

A.Y. 2016–2017

Cosimo Perini

Contents

Introduction 2

1 Type-free λ-calculus 4

1.1 λβ-calculus . 4
1.2 λβη-calculus . 7

2 Simple Type Theory 7

2.1 Basics of λA
→

. 8
2.2 Principal Type Algorithm for λA

→
. 10

2.3 Church’s typing . 13
2.4 Weak Normalization Theorem . 15
2.5 Strong Normalization Theorem 17

3 Curry-Howard Isomorphism 19

3.1 Implicational fragment of I . 19
3.2 Substructural Logics . 21
3.3 Intuitionistic Proofs as Programs 22

4 Gödel’s System T 25

4.1 Preliminary Definitions . 25
4.2 Normalization . 26
4.3 Kreisel’s Modified Realizability 27
4.4 Expressive Power . 31

References 32

Abstract

This work presents basic results in simple type theory, starting with

a type-assignment system with arrow-type only. Type checking for this

theory is discussed and an algorithm is given in proving the decidabil-

ity of the problem. Termination of computations is proved both in weak

and strong sense using standard techniques. Correspondence between

intuitionistic propositional logic and richer typed systems is briefly inves-

tigated and some remarks on structural proof theory and typability are

made in parallel. We then prove strong normalization for Gödel’s Dialec-

tica system. Expressive power of this theory is finally shown proving the

correspondence between provability in Heyting Arithmetic and typability

in this typed system, and stating the equivalence of definable functions

with primitive recursive functions provably total in first-order arithmetic.

CONTENTS 2

Keywords Simple Type Theory · Normalization · Proofs into Programs

Introduction

λ-calculus was proposed in the early 1930s by Alonzo Church as a foundation of
logic and mathematics in which the concept of abstraction is taken as primitive.
In 1936, Church’s students Stephen Kleene and Barkley Rosser proved that the
1933 version of this system was inconsistent, but the pure formulation turned
out to be surprisingly rich.

Progressively, pure λ-calculus revealed to be a successful model for the
concept of effectively computable function, and, although the class of λ-definable
numerical functions was proved to be identical with that of Turing computable
ones, it differs from Turing model being what is now known as a (higher order)
functional programming language, while Turing machines resemble programs in
imperative programming languages.

Typed versions of λ-calculus were introduced first by Haskell Curry in 1934
(for the related system of combinatory logic in fact) and by Church in 1940, after
he had given a series of lectures attended by Alan Turing during his doctorate
studies in Princeton. Types are syntactic objects which can be assigned to
λ-terms, providing a partial specification of the represented algorithm. More-
over, types are useful to check the safety of the very algorithms coded as λ-
terms, and to improve the efficiency of this coding. In spite of this, Curry’s and
Church’s works on typed systems were characterized by two different approaches
to typing λ-terms:

• Curry assumed terms of type-free λ-calculus, and associated to each term
a set of possible types;

• Church adopted an annotated version of λ-terms, so that there exist differ-
ent terms of different type, although they are “morphologically identical”.

Curry’s approach, which here is called ‘type assignment’, corresponds to
the programming paradigm of writing a program without typing at all, and
then to check by means of a compiler whether this program can receive a type
(and this will happen if the program is correct). This is what is usually called
implicit typing.

Church’s typing, on the other hand, corresponds to the programming paradigm
of writing a program together with its type, so that the type-checking results
easier. In literature this is known as explicit typing; systems with this kind of
typing will here be called ‘typed system’.

Several versions of λ-calculus with types have been developed within both
paradigms, and the evolution of this kind of systems has been (and is being) so
widespread that we decided to focus our exposition on some simple type theories
only, excluding, in spite of their relevance, many extensions, as Girard’s system
F, or Martin-Löf dependent type theory.1

1[14] gives a friendly introduction to F including an exposition of a categorial semantics for
this polymorphic λ-calculus; it corresponds to second-order logic and dates back to 1970. By
means of a slightly modified computability predicate, Jean-Yves Girard proved SN for F and
its extension Fω , which corresponds to Takeuti’s GLC sequent-calculus for higher-order logic:
Girard’s proofs of normalization for these systems solved also Takeuti’s conjecture about cut-

CONTENTS 3

Types were in fact introduced first in Russell and Whitehead’s Principia
Mathematica, and since then no clear definition of what kind of object a type
should be: From grammatical categories to spaces in the sense of homotopy
theory, various but closely interrelated interpretations have been given.2

We decided not to give any specific semantic interpretation of λ-calculi we
investigate, but, since its relevance for proof theory and influence in develop-
ment of the whole subject, we will briefly discuss the correspondence between
types and provable formulae of intuitionistic logic known as Curry-Howard iso-
morphism, to which Sect.3 is committed. For the reader’s sake, we give here a
partial glossary to summarize this point of view:

Type Theory Logic

type proposition
term proof
type constructor logic connective
constructor introduction rule
destructor elimination rule
redex proof detour
reduction normalization
normal form normal proof
inhabitation provability

After a concise review of untyped λ-calculus in Sect.1, we begin our ex-
position of simplest type system λA

→
, starting with a formal definition of type

assignment, for which an algorithm of type checking is given in Sect.2.2. The
existence of a terminating strategy for λA

→-terms reduction is proved in Sect.2.4
by means of a Weak Normalization Theorem (WN) for the corresponding typed
system defined in the previous section. We organize the proof following Turing’s
proof, originally typewritten before 1942; it is probably the very first proof of
this theorem.

A stronger result, namely that all reductions do terminate, is proved in the
subsequent section using Tait’s computability predicate.3 This method is now

elimination in GLC, and (progressively extended) have become standard techniques in proof
theory (see [12]).

Per Martin-Löf Type Theory dates back to 1971, and, after various revisions during sub-
sequent years, consists of an intuitionistic theory of iterated inductive definitions which had
widespread conceptual influence on logically-oriented programming-languages, and it is the
basis of many contemporary computer proof-assistants as Coq (see [7] for an overview of
Martin-Löf’s approach, and [27] for the philosophical relevance of inductive types in con-
structive mathematics). In dependent type theory, the correspondence between types and
propositions is more systematically exploited than in systems we investigate in the present
work, and this intuitionistic version of typed systems revealed interesting connections with
homotopy theory and higher category theory, catalysing the development of homotopical inter-
pretation of types and indirectly legitimizing, from a constructive point of view, the univalent
approach to foundations of mathematics (see [6] for relevant results in this direction).

2See [23] for a first “type-theoretic” approach to grammatical categories. [25] gives a concise
history of set-theoretic interpretation of typed systems and of their “standard models”. [24]
introduced first the notions of hyperdoctrine and elementary topos as models for λ-abstraction;
for a unified exposition of logic and type theory by means of fibred category theory see [19].
[34] is a comprehensive account of the correspondence between various λ-calculi and systems
of logic and arithmetic. For an introduction to the (now flourishing) field of Homotopy Type
Theory see [39] .

3According to [37], the idea of a computability predicate had been anticipated by Kurt
Gödel in unpublished notes and lectures given in 1941.

1. Type-free λ-calculus 4

considered standard, thus we adopt it to prove the analogous result for Gödel
system T, which we investigate in Sect.4.

This system can be considered an interpretation of first-order arithmetic in
a logic-free theory of primitive recursive functionals of finite type: In [15] the
consistency of arithmetic is deduced by finitary reasoning from an assumption
that all closed terms in T of type Int compute to unique numerals. Here the
same result is obtained by means of modified realisability due to Georg Kreisel
and, independently, A.G. Dragalin4 applied to the “modern version” of T, ex-
plicitly defined here as a λ-calculus with integers and a recursion operator.5

Finally we show how terms of this system can be thought of as representing the
computational contents of arithmetical reasoning. Via modified realizability,
the class of T-definable functions is proved to be identical with that of provably
total functions of first-order arithmetic, and provability in Heyting Arithmetic
is proved to correspond to type assignment in T: These are the main results of
Sects.4.3 and 4.4.

No aim of completeness leads the present work: It is nearly intended to be
a (concise) primer on a still flourishing interdisciplinary subject.

1 Type-free λ-calculus

We remind here some basic definitions and results concerning β-reduction of un-
typed λ-terms; moreover some remarks concerning βη-reduction are expressed.

These tools will be useful throughout the work, but the present section will
not be a complete exposition of the matter.6

1.1 λβ-calculus

Definition 1.1. We assume an infinite sequence of term-variables is given.
Then the set of terms of type-free λ-calculus is defined inductively by the fol-
lowing grammar:

M ::= x | PQ | λx.P

• PQ is called application;

• x is called atom (and it is a term-variable);

• λx.P is called abstraction.

Any term which is not an atom is called composite.

Notational Convention 1. Throughout the present work

◦ Term-variables are denoted by x, y, z, . . .;

◦ Arbitrary terms are denoted by M,N,P, . . .;

4See [22] and [10] respectively.
5This style of presenting T comes from seminal papers by A. Grzegorczyk [16] and Dragalin

[9], and it differs from Gödel’s Dialectica paper for the absence, in the latter, of any recursor
nor issue of normalization. Note also that Gödel’s works which William Tait refers to do not
mention this issue at all, and the very Tait’s technique was introduced first to prove WN only,
despite almost no change was necessary in [36] to obtain the stronger result.

6See [18] for a clear introduction to the topic.

1. Type-free λ-calculus 5

◦ M ≡ N means syntactic identity;

◦ We assume that application associates to the left and abstraction asso-
ciates to the right.

Definition 1.2. The length |M | of a term M is the number of occurrences of
variables in M . Formally:

◦ |x| = 1;

◦ |NP | = |N | + |P |;

◦ |λx.N | = 1 + |N |.

Notational Convention 2. We identify terms with their tree-structure and we
will work on them modulo this convention:

Term Tree

x x

MN b

M N

λx.M λx

M

Definition 1.3. In accordance to our notation,

• A term N is a subterm of M iff the tree corresponding to N is a subtree
of the tree corresponding to M .

• A variable x in a term M is bound by the first λx above x, and if there is
no λx above some x, that x is said to be free in M .

• The set of free variables in a term is defined inductively:

· FV (x) := x;

· FV (MN) := FV (M) ∪ FV (N);

· FV (λx.M) := FV (M) r {x}.

A term M is said to be closed when FV (M) = ∅.

• The substitution of M for all free occurrences of x in N is defined induc-
tively:

· x[M/x] := M ;

· y[M/x] := y if y 6≡ x;

· NP [M/x] := N [M/x]P [M/x];

· (λx.N)[M/x] := λx.N ;

1. Type-free λ-calculus 6

· (λy.N)[M/x] := λy.N if x /∈ FV (N);

· (λy.N)[M/x] := λy.N [M/x] if x ∈ FV (N) and y /∈ FV (M);

· (λy.N)[M/x] := λz.N [M/x][z/y] if x ∈ FV (N), y ∈ FV (M) and
z /∈ FV (M) ∪ FV (N).

Simultaneous substitution is defined as a natural extension.

• If y /∈ FV (M), then the act of replacing an occurrence of λx.M in a term
by λy.M [y/x] is called change of bound variables. If N changes to P by
a finite series of such changes, we say N α-converts to P : N ≡α P .

We will work on terms modulo α-conversion; some basic facts about ≡α

are given in [18, 1B].

Definition 1.4. A β-redex is any term (λx.M)N ; its contractum is M [N/x].
β-contraction →β is thus defined:

◦ (λx.M)N →β M [N/x];

◦ if M →β M
′ then (MN) →β (M ′N);

◦ if M →β M
′ then (NM) →β (NM ′);

◦ if M →β M
′ then (λx.M) →β (λx.M ′).

Reflexive-transitive closure of →β modulo ≡α is called β-reduction and it
is denoted by ։β .

Finally we say M β-converts to N (M =β N) when it is possible to change
M to N by a finite sequence of β-reductions and reversed β-reductions (β-
expansion).

We can now state the main results concerning untyped λ-calculus; we shall
not prove them here, but various proofs are given in several places in literature.7

First remind the following

Definition 1.5. A β-normal form (β-nf) is any term which contains no β-redex.
The class of all β-nf’s is here denoted by NFβ . We say a term M has β-nf N
iff M ։β N and N ∈ NFβ .

Theorem 1.1.1 (Church-Rosser Theorem).

(i) If M ։β N and M ։β N
′, then there exists a P such that N ։β P and

N ′
։β P .

(ii) If M =β N then there exists a P such that M ։β P and N ։β P .

Corollary 1.1.2 (Uniqueness of β-nf). A term M has at most one β-nf modulo
α-conversion.

Remark 1. Using only tools we have so far defined it is quite easy to prove, by
induction on |M |, that every β-nf M can be expressed uniquely as

M ≡ λx1 . . . xm.yM1 . . .Mn (m ≥ 0, n ≥ 0)

where M1 . . .Mn are β-nf’s and y may be one of the xi.
We will refer to this fact as to head-normal form lemma.

7See e.g. [3, 2.3.10-20] for a “neat chain” of propositions leading to these results.

2. Simple Type Theory 7

1.2 λβη-calculus

Church-Rosser theorem can be extended to βη-reduction, which is naturally
defined by allowing η-contractions

λx.Mx →η M x /∈ FV (M)

in any sequence of β-contractions.
=βη is thus defined in the obvious way.
We will use the expression M ։βη N when there is a finite sequence of

βη-contractions (modulo ≡α) changing M to N .

Remark 2. All η-reductions are finite. In particular, any η-reduction M ։η N
has length8 ≤ |M |/2, for any η-contraction reduces |M | to |M | − 2, so the set
{M}η of all N such that M ։η N is always finite.

Definition 1.6. A βη-redex is any term of the form (λx.M)N (β-redex) or
λx.Mx (η-redex).

A term M is a βη-normal form if it has no βη-redex among its subterms.
Having a βη-nf is defined as the natural extension of having a β-nf.

As before, Church-Rosser theorem assures, for a given M , the uniqueness
of its βη-nf; we will denote it by M∗βη. Finally we remind the following

Fact 1.2.1. [2, 15.1.5] A term has a βη-nf iff it has a β-nf.

Remark 3. Not every term has a β-nf: consider, for instance,

(λx.xx)(λx.xx).

Moreover the set of terms with β-nf is not recursive ([2, 6.6.5]), thus we
cannot have an algorithm to decide whether a term M has a β-nf. In spite of
this, we can define a reduction strategy such that, given a term M , it proceeds
in a sequence of leftmost β-contractions M →β M1 . . . →β Mj−1 →β Mj . . ., i.e.
in reducing at every step i the leftmost β-redex of Mi−1. This process ends iff
M has a β-nf, and if it terminates it ends at M∗β. This result is usually called
leftmost reduction theorem.

Therefore to seek forM∗βη, one has to reduceM by its leftmost β-reduction:

• If the process does not terminate, then by Fact 1.2.1, M∗βη does not exist;

• If the algorithm does terminate, then it does so at M∗β by leftmost re-
duction theorem, hence proceeding with a leftmost η-reduction strategy
one reaches an η-nf in |M∗β |/2 steps by Remark 2 and η-postponement
theorem ([2, 15.1.6]).

2 Simple Type Theory

In this section we start the description of one the simplest typed system based on
λ-calculus. It is usually denoted by TA for ‘type assignment’. Here the system
is simply denoted by λA

→ and it is defined explicitly as a system of λ-abstraction.
In spite of this, it has a parallel version in combinatory logic with the same main
properties ([18, Ch.14]), that we won’t discuss here.

8We have not given a formal definition of ‘length of a reduction’, but the reader can consider
it as the number of β(η)-contractions (finite or not) constituting the given reduction.

2. Simple Type Theory 8

2.1 Basics of λA

→

Definition 2.1. We assume an infinite sequence of type-variables, distinct from
term-variables, is given.

Types are built by the operator → from type-variables: More formally

◦ each type-variable a, b, c, . . . is a type;

◦ if τ and σ are types, so is τ → σ;

◦ nothing else is a type.

Length of types is defined inductively:

◦ |a| := 1;

◦ |τ → σ| := |τ | → |σ|.

The set of distinct type-variables in a type τ is denoted by V ars(τ).

Definition 2.2. Any expression of the form M : τ is said type-assignment of
the subject M to the type τ .
A finite set of type-assignments Γ = {x1 : τ1, . . . , xm : τm} whose subjects are
term-variables and which is consistent, i.e. no variable is subject of more than
one assignment, is said a type-context.

Notational Convention 3.

• Γ−x indicates the result of removing from context Γ the assignment whose
subject is x.

• Γ↾M is the result of removing from context Γ all the assignments xi : τi

for xi /∈ FV (M).

• When Subjects(Γ) = FV (M) for some M , we refer to Γ as an M -context.

• We will say that Γ1 is consistent with Γ2 when Γ1 ∪ Γ2 is consistent.

A sequent-style Natural Deduction system associated to λA
→

is given in the
table below. We will refer to any expression of the form Γ ⊢ M : τ , with Γ
possibly empty, as a λA

→-formula.

Axioms: x : τ ⊢ x : τ

Rules for →:
Γ1 ⊢ M : τ → σ Γ2 ⊢ N : τ

→-elim
Γ1 ∪ Γ2 ⊢ (MN) : σ

with Γ1 ∪ Γ2 consistent.

Γ ⊢ M : τ
→-intro

Γ − x ⊢ (λx.M) : σ → τ
when Γ is consistent with x : σ.

2. Simple Type Theory 9

When one applies →-intro, x is said to have been (possibly vacuously)
discharged by the rule.

Definition 2.3. Given a type context Γ if there is a λA
→-deduction of Γ ⊢ M : τ

we say Γ′ ⊢λA
→

M : τ where Γ ⊆ Γ′; when Γ′ = ∅, τ is said the type of M , or
equivalently we say M has type τ .

Remark 4. It is obvious that if Γ ⊢λA
→

M : τ , then Γ+ ⊢λA
→

M : τ for every
Γ+ ⊇ Γ. Moreover by an easy induction on |M | one can prove that if Γ ⊢
M : τ is λA

→
-deducible then Subjects(Γ) = FV (M), hence if ⊢λA

→

M : τ , i.e.
∅ ⊢λA

→

M : τ , then M is closed.

We have the following

Lemma 2.1.1 (Subject-construction lemma for λA
→). For any Γ,M, τ , a λA

→-deduction
∆ of Γ ⊢ M : τ gives the term structure of M by erasing types and context in
∆. Consequently,

(i) if M ≡ x then ∆ ≡ x : τ ⊢ x : τ .

(ii) if M ≡ NP then ∆ ≡

...
Γ1 ⊢ N : σ → τ

...
Γ2 ⊢ P : σ

→-elim
Γ1 ∪ Γ2 ⊢ NP : τ

.

(iii) if M ≡ λx.N then ∆ ≡

...
Γ, x : ρ ⊢ N : σ

→-intro
Γ − x ⊢ λx.N : ρ → σ

.

Proof. The main statement follows directly from definitions of terms-as-trees
and of λA

→-deduction.
To (i)-(iii): we can reason by an easy induction on |M |, considering for (iii)

both cases of discharge and vacuous discharge.

Remark 5. For a general term this result cannot be strengthened into a “terms-
deductions correspondence”, since deductions are defined by types that occur in
them. Thus deductions with the same tree-structure but occurrences of different
types are different. In spite of this, reasoning by induction on |M | and using
the head normal form lemma, one can prove that, given a λA

→-deduction ∆ of
Γ ⊢ M : τ with M in β-nf,

(i) ∆ is unique, and

(ii) every type in ∆ has an occurrence in Γ or in τ .

In virtue of the well-known correspondence we will discuss in Sect.3, (ii)
is the type-theoretic version of subformula property for NK-derivations, stating
that any formula in an irreducible derivation occurs in the conclusion or in the
living assumption of that deduction.

Thinking of type theories as tools to avoid errors of mismatching in pro-
gramming, it is important that any βη-calculation preserves safety of a given
term of a certain type. This can be stated formally as follows:

2. Simple Type Theory 10

Fact 2.1.2 (Subject-reduction Theorem). If Γ ⊢λA
→

M : τ and M ։β N , then
Γ ⊢λA

→

N : τ .

Proof. See [17, 2C].

We do not have a similar result for β-expansion; hence, defining Types(M)
as the set of all τ such that ⊢λA

→

M : τ , we have that β-contraction enlarge

this set. This means that the approach we used for λA
→ does not guarantee

conversion-invariance of Types(M). However this is only a small price we pay
for having that Types(M) ⊆ Types(N) whenever M ։β N , which can be seen
as assuring that β-reductions make M “safer” at any β-step.
Moreover, this defect is overcome by adding a new rule to λA

→
to work with

=β(η): See [17, Ch.4] for the details.

Definition 2.4. A term M is said (λA
→-)typable iff there exist Γ and τ such

that Γ ⊢λA
→

M : τ .

Fact 2.1.3. The class of λA
→-typable terms is closed under taking subterms,

abstraction and βη-reduction.

Proof. It follows from Lemma 2.1.1, Fact 2.1.2 and definition of →-intro, re-
spectively.

2.2 Principal Type Algorithm for λA

→

A λA
→

-typable term has in general an infinite set of types: The term λx.x e.g.
is typable with any type of the form τ → τ but all the types of this set are
instances of the type a → a.

This type is called the principal type of λx.x, and its corresponding
λA

→-deduction is said to be its principal deduction.
The Principal Type Algorithm or PT algorithm described in[17, Ch.3] gives

a decision procedure for typability of any term of λA
→

. From a practical point
of view, such an algorithm consists of a type-checking procedure which allows
the programmer to decide whether the created program is safe, assuming, as we
did before, typability as safety criterion.

We decided to develop this type-checking algorithm by means of Robinson’s
notion of unification, first developed in [31].9 First some preliminary definitions:

Definition 2.5.

• A type-substitution S(τ) of a type τ is a function from type-variables
aτ

1 , . . . , a
τ
n in τ to types

aτ
i 7→ σi such that

◦ S(aτ
i) ≡ σi for every i ∈ {1, . . . , n};

◦ S(b) ≡ b if b 6≡ aτ
i for any i ∈ {1, . . . , n};

9For a different treatment based on an equation-solving algorithm see the historical remarks
in [17, Ch.3].

2. Simple Type Theory 11

◦ S(ρ → σ) ≡ S(ρ) → S(σ).

• Given ρ, σ, a unifier of 〈ρ, σ〉 is any S such that S(ρ) ≡ S(σ). Similarly a
unifier of 〈〈ρ1, . . . , ρn〉, 〈σ1, . . . , σn〉〉 is any S such that S(〈ρ1, . . . , ρn〉) ≡
S(〈σ1, . . . , σn〉).

• A most general unifier (mgu) of 〈ρ, σ〉 is a unifier U such that for any other
unifier S of 〈ρ, σ〉 we have S(ρ) ≡ S′(U(ρ)) for some substitution S′.

We now state the unification algorithm we will use to define the PT
procedure. A proof of its correctness is given in [31], but the main idea is to
progressively build a mgu for the input by means of appropriate concatenation
of substitutions.

Unification Algorithm. Input: Any pair 〈ρ, τ〉 of types.
Output: Either a correct statement that 〈ρ, τ〉

is not unifiable, or a mgu U of 〈ρ, τ〉.

Step 0: Choose k = 0 and U0 = empty substitution.

Step k + 1: Given k and Uk, construct ρk :≡ Uk(ρ) and τk :≡ Uk(τ), then apply the
following procedure to 〈ρk, τk〉:

Given a pair 〈µ, ν〉 of types, write µ and ν as strings of sym-
bols, say µ ≡ s1 . . . sm and ν ≡ t1 . . . tn (m,n ≥ 1) where each of
s1, . . . , sm, t1, . . . , tn is an occurrence of a parenthesis, arrow or vari-
able.

Now

◦ if µ ≡ ν, then state that µ ≡ ν and stop;

◦ else, choose the least p ≤ min{m,n} such that sp 6≡ tp: It
is easy to verify that one of sp, tp must be a variable and the
other must be a left parenthesis or a different variable. Further
sp can be shown to be the leftmost symbol of a unique subtype
µ∗ of µ. Similarly tp is the leftmost symbol of a unique subtype
ν∗ of ν. Choose one of µ∗, ν∗ that is a variable and call it ℵ,
and if both are variables choose the first in a given sequence of
all type-variables of LλA

→

. Then call the remaining member of
〈µ∗, ν∗〉 α. The pair 〈ℵ, α〉 is said disagreement pair for 〈µ, ν〉.

This procedure will output either a correct statement that ρk ≡ τk,
or a disagreement pair 〈ℵ, α〉 such that ℵ 6≡ α.

✷ If ρk ≡ τk, choose U = Uk;

✷ else decide whether ℵ ∈ V ars(α):

✸ If ℵ ∈ V ars(α), state that 〈ρ, τ〉 is not unifiable and stop;

✸ else replace k by k + 1, choose Uk+1 = [α/ℵ] ◦ Uk and go to
Step k + 2.

2. Simple Type Theory 12

Theorem 2.2.1 (PT Theorem for λA
→

). Every typable term has a principal type
in λA

→. Moreover, there is an algorithm that will decide whether a given term M
is typable in λA

→
, and if it is so will output a principal deduction and a principal

type for M .

Proof. Consider the following algorithm:

Input: Any term M , closed or not.
Output: Either a principal deduction ∆M for M or a correct statement

that M is not typable.

Case 1: If M ≡ x, choose ∆M = x : a ⊢ x : a where a is any type-variable.

Case 2: If M ≡ λx.M1 and x ∈ FV (M1) := {x, x1, . . . , xm}, then apply the al-
gorithm to M1. If M1 is not typable, neither is M . If M1 has principal
deduction ∆M1

whose conclusion is x : α, x1 : α1, . . . , xm : αm ⊢ M1 : β,
extend ∆M1

by a →-intro discharging x and identify ∆M with the result-
ing deduction.

Case 3: If M ≡ λx.M1 and x /∈ FV (M1), proceed as in the previous case, with a
vacuous discharge of x when extending ∆M1

by →-intro.

Case 4: If M ≡ M1M2, apply the algorithm to M1 and M2. If M1 or M2 is
untypable, so is M . If M1 and M2 are both typable, let ∆M1

and ∆M2
be

their respective principal deductions. Modulo rename of type-variables we
may assume ∆M1

and ∆M2
not to have any common type-variable. Next

list free term-variables in M1 and M2, say

FV (M1) = {u1, . . . , up, w1, . . . , wr} (p, r ≥ 0)

FV (M2) = {v1, . . . , vq, w1, . . . , wr} (q ≥ 0)

where u1, . . . , up, v1, . . . , vq, w1, . . . , wr are distinct.
If PT (M1) ≡ ρ → σ, then the conclusions of ∆M1

and ∆M2
have form,

respectively

u1 : θ1, . . . , up : θp, w1 : ψ1, . . . , wr : ψr ⊢ M1 : ρ → σ (1)

v1 : φ1, . . . , vq : φq, w1 : χ1, . . . , wr : χr ⊢ M2 : τ. (2)

Apply unification algorithm to 〈ψ1, . . . , ψr, ρ → σ〉 and 〈χ1, . . . , χr, τ → c〉
where c is a fresh variable.

✷ If this pair has no unifier, then M1M2 is not typable;

✷ else the unification algorithm gives a mgu U and modulo renaming we
have

Dom(U) = V ars(ψ1, . . . , ψr, ρ, χ1, . . . , χr, τ → c) (3)

Range(U) ∩ V = ∅, (4)

2. Simple Type Theory 13

where V := (V ars(∆M1
) ∪ V ars(∆M2

)) r Dom(U). Applying U to
∆M1

and ∆M2
changes their conclusions to

u1 : U(θ1), . . . , up : U(θp), w1 : U(ψ1), . . . , wr : U(ψr) ⊢ M1 : U(ρ → σ)

and

v1 : U(φ1), . . . , vq : U(φq), w1 : U(χ1), . . . , wr : U(χr) ⊢ M2 : U(τ).

Thus, by definition of U, U(ρ → σ) = U(τ → c) = U(τ) → U(c), and
we can apply →-intro to U(∆M1

) and U(∆M2
). Choose ∆M to be

the resulting deduction.

The case of PT (M1) atomic is parallel, and it is left to the reader.

For a proof of correctness of this algorithm see [17, 3E1].

Hence we have

Corollary 2.2.2. Type-checking and typability for λA
→

are decidable.

For the sake of completeness we remind here that the “dual” of PT theorem
also holds for λA

→.

Fact 2.2.3 (Second PT Theorem). If a type τ is assignable to a closed term
M , then it is the principal type of a closed term M∗ (possibly M ≡ M∗).

A detailed proof is given in [17, Ch.7], where an algorithm is also defined so
that, given τ and M , one can construct M∗ combining an occurrence of M with
restricted sets of “building blocks” consisting in extra terms whose principal
type is known.

2.3 Church’s typing

So far we have worked with Curry’s approach to typing, which can be seen as
an ancestor of polymorphic type theory with unexpressed polymorphism.

In contrast, Church’s way of introducing types in λ-calculus restricts the
definition of term by giving to each M a type as part of its structure. Formally
we have

Definition 2.6. Given a type-context Γ, the set TT(Γ) of typed terms relative
to Γ is a set of expressions such that

◦ if x : σ ∈ Γ, TT(Γ) contains the term-variable xσ;

◦ if Γ1 ∪ Γ2 is consistent and Mσ→τ ∈ TT(Γ1) and Nσ ∈ TT(Γ2), then
(Mσ→τNσ)τ ∈ TT(Γ1 ∪ Γ2);

◦ if Γ is consistent with {x : σ} and M τ ∈ TT(Γ), then
(λxσ.M τ)σ→τ ∈ TT(Γ − x).

2. Simple Type Theory 14

If M τ is a typed-term (relative to some Γ), τ is said the type of M τ .

Notational Convention 4. Types of terms are omitted whenever they are obvi-
ous, so that, for instance, we shall write (λx.M)σ→τ for (λxσ .M τ)σ→τ .

Remark 6. We are working with typed terms relative to a given context, while
Church’s system in [5] has terms typed in an absolute sense, so that if Mσ→τ

and Nσ are (typed) terms so is (MN)τ , while this happens here only when the
union of their respective contexts is consistent. This is, so to speak, a median
between Curry-style typing, known as type-assignment, and Church-style one,
whose corresponding system is usually said typed. We adopt the notation λA

→

for systems with former approach and λC
→ for those with the latter.

Notational Convention 5. We indicate with M /τ the type-erasure of M τ , i.e. the
untyped term obtained by erasing all types from M τ .10

In spite of formal differences, one can easily identify these approaches in
the following sense:

Lemma 2.3.1. The translation here given from LλA
→

to LλC
→

is a one-to-one

correspondence between λA
→

-deductions ∆ and typed terms M τ
∆:

◦ If ∆ = x : τ ⊢ x : τ , define M τ
∆ ≡ xτ ;

◦ If ∆ =

∆1

Γ1 ⊢ N : σ → τ

∆2

Γ2 ⊢ P : σ
→-elim

Γ1 ∪ Γ2 ⊢ NP : τ

,

define M τ
∆ ≡ (Nσ→τ

∆1
P σ

∆2
)τ , where Nσ→τ

∆1
∈ TT(Γ1) and P σ

∆2
∈ TT(Γ2);

◦ If ∆ =
∆′

Γ, x : ρ ⊢ N : σ
→-intro

Γ − x ⊢ λx.N : ρ → σ

,

define M τ
∆ ≡ (λxρ.Nσ

∆′)τ , where Nσ
∆′ ∈ TT(Γ) and τ ≡ ρ → σ.

In particular, if ∆ is a λA
→

-deduction of Γ ⊢ M : τ , then

M τ
∆ ∈ TT(Γ) and M

/τ
∆ ≡ M.

Proof. By construction we have M τ
∆ ∈ TT(Γ) and M /τ ≡ M whenever ∆ is a

λA
→

-deduction of Γ ⊢ M : τ . To show that this is indeed a one-to-one corre-

spondence we define the following inverse translation
−

∆ (−) from typed terms
to λA

→
-deduction:

• if M τ ≡ xτ , define
−

∆ (M τ) = x : τ ⊢ x : τ ;

• if M τ ≡ (Mσ→τ
1 Mσ

2), Mσ→τ
1 ∈ TT(Γ1), Mσ

2 ∈ TT(Γ2), Γ1 ∪ Γ2 is consis-

tent, and
−

∆ (Mσ→τ
1) =

...
Γ′

1 ⊢ M1 : σ → τ
,

−

∆ (Mσ
2) =

...
Γ′

2 ⊢ M2 : σ
for

Γ′
1 ⊆ Γ1 and Γ′

2 ⊆ Γ2, then define
−

∆ (M τ) by application of →-elim to
−

∆ (Mσ→τ
1),

−

∆ (Mσ
2);

10Obviously, one could define type-erasure as a forgetful function from typed-terms to
λA

→
-terms by induction on the structure of M , but for the present purpose our convention is

sufficient.

2. Simple Type Theory 15

• if M τ ≡ (λxρ.Mσ
1)ρ→σ, τ ≡ ρ → σ, Mσ

1 ∈ TT(Γ), Γ is consistent with

{x : ρ}, and
−

∆ (Mσ
1) =

...
Γ′ ⊢ M1 : σ

with Γ′ ⊆ Γ, define
−

∆ (M τ) by

application of →-intro to
−

∆ (Mσ
1), possibly discharging x : ρ.

It is straightforward that
−

∆ (M τ
∆) = ∆, and the result is proved.

Note that from this result we have that if M τ ∈ TT(Γ), then
−

∆ (M τ) is
a λA

→
-deduction of Γ↾M /τ ⊢ M /τ : τ , so that we can think of M τ as encoding a

λA
→-deduction whose conclusion has M /τ as subject.

Definitions of length, replacement, binding, (typed) substitution,
α-conversion, β(η)-contraction (and reduction) are just the same as those for
λA

→, with the obvious caveats concerning type-mismatches to assure we are
working with well-defined typed terms. Thus we can state the following

Fact 2.3.2.

(i) If a β- or η-contraction in a typed term M τ changes M τ to an expression
E, then E is also a typed term with type τ .

(ii) If M τ
։βη N

τ , then Γ↾N /τ ⊆ Γ↾M /τ and M /τ
։βη N /τ .11

(iii) A typed term M τ has a β-reduction with length n iff M /τ does; and the
same holds for η-reduction.

(iv) A typed term M τ is a β-nf iff M /τ is a β-nf; the same holds for η-nf.

Proving these statements involves only verifications of formal definitions of
the previous notions, thus we leave it to [17, 5B].

Moreover, reasoning as with untyped λ-terms we can prove the Church-
Rosser theorem for βη-reduction of typed terms. Again, by this we obtain the
uniqueness of βη-nf’s for typed terms, but we still do not know if each term has
a nf. That is the question we are now going to answer.

2.4 Weak Normalization Theorem

We assumed that reductions are, so to speak, imitations of the process of com-
puting values. What we will now prove is that a computation can always be
continued to a final result.

Theorem 2.4.1 (Weak Normalization Theorem, Turing 1942). Every typed
term Mπ has both a β-nf and a βη-nf.

Proof. If Mπ has a β-nf, then it has also a βη-nf by the typed version of Fact
1.2.1. Thus it suffices to prove the existence of a β-nf for Mπ. This is obtained
by enumerating first all the β-reductions in one step, all the β-reductions in two
steps, and so on, until the β-nf is found: This will eventually happen since typed
systems do not allow self-application, so there are only finitely many reductions
of length n starting at a fixed term.

Formally, define:

11Proof-theoretically (i)-(ii) mean that a reduction of a deduction of Γ ⊢ M : τ in the sense
of [29] gives a genuine deduction of Γ′ ⊢ N : τ for some N , Γ′ such that M ։β N and Γ′ ⊆ Γ.

2. Simple Type Theory 16

◦ the degree ∂(τ) of a type τ , such that

∂(a) := 1 for a type variable

∂(ρ → σ) := max(∂(ρ), ∂(σ)) + 1;

◦ the degree ∂(R) of a β-redex Rσ, such that ∂((λx.N)P) := ∂(ρ → σ)
where (λx.N)ρ→σ and P ρ;

◦ the degree d(N τ) of a term as the sup of the degrees of the redexes it
contains, and if N τ is a β-nf, then d(N τ) := 0.

Now it is pure routine to check that d(N [P σ/xσ]τ) ≤ max(d(N τ), d(P σ), ∂(σ)),
and obviously, for any Rσ, ∂(Rσ) > ∂(σ). It is also straightforward that if
Nσ

։β P
σ then d(P σ) ≤ d(Nσ). Moreover we have that

(⋆) If Rσ is a redex of maximal degree n in Mπ and all the redexes strictly
contained in Rσ have degree less than n, then, if Nπ is obtained from Mπ

by converting Rσ to Cσ, Nπ has strictly fewer redexes of degree n.

Proof of (⋆). After the contraction, the redexes outside Rσ remain, while those
strictly contained in Rσ are in general conserved, but sometimes proliferated.
However, these redexes have degrees less than n by hypothesis. Moreover Rσ is
possibly replaced by some redexes of strictly smaller degree. From these facts,
the result follows.

Finally, define µ(Mπ) := (n,m) with n := d(Mπ), m := #Rσ such that
∂(Rσ) = n. By (⋆), it is possible to choose a redex Rσ of Mπ such that, af-
ter contraction to Cσ, the resulting term M ′π satisfies µ(M ′π) < µ(Mπ) w.r.t.
lexicographic order. Thus the main statement is proved by a double induction.

As a consequence we have

Corollary 2.4.2 (Weak Normalization Theorem for λA
→

). Every typable
λA

→-term has both a β-nf and a βη-nf.

Proof. This follows from Lemma 2.3.1, Fact 2.3.2 and the Weak Normalization
Theorem (WN) for typed terms.

Corollary 2.4.3. There is a decision-procedure for β-equality of typable
λA

→-terms; i.e. an algorithm which, given any typable terms P and Q, will
decide whether P =β Q. Similarly for βη-equality.

Proof. Reduce P and Q to their respective β-nf’s (which exists by WN, and can
be found using the leftmost reduction strategy) and see whether they differ.

2. Simple Type Theory 17

2.5 Strong Normalization Theorem

WN says that every λA
→-typable term can be reduced to a normal form, so that

we can use a defined strategy to be sure that our computation terminates. But
we will now prove that all computations do terminate, independently to any
strategy we use. That is the content of the Strong Normalization Theorem
(SN), by which we obtain the following

Lemma 2.5.1. There is an algorithm which accepts Mπ as input and outputs
a number ν(Mπ) such that all reductions of Mπ have length ≤ ν(Mπ).

Proof. Organise all the possible βη-reduction of Mπ as a branching tree, speci-
fying a redex of Mπ

0 :≡ Mπ, then a redex of Mπ
1 , and so on. Since any term has

only a finite number of subterms, this tree is finitely branching, and since, by
SN, every reduction is finite, the tree has no infinite branch. Thus, by Köning’s
Lemma, the whole tree must be finite, so that we can measure its branches and
define ν(Mπ) as the maximum of their lengths.12

We are going to prove SN for typed terms using what is usually known as
a computability predicate defined by a suitable induction. This method is due
essentially to [36] and it has revealed extremely flexible. For this reason, it will
be the exemplar for proofs of the analogous results concerning the type theories
we will investigate in the following sections.

Theorem 2.5.2 (Strong Normalization Theorem). All typed terms are strongly
β-normalizable; i.e. given a typed term Mπ, all β-reductions of Mπ are finite.

Proof. First define a set compρ by induction on |ρ|:

◦ for ρ atomic, Nρ ∈ compρ iff Nρ is strongly normalizable;

◦ for ρ ≡ σ → τ , Nρ ∈ compρ iff, for all P σ ∈ compσ, NP ∈ compτ .

Next, let a term be said neutral iff it is not of the form λx.Q.
We will now prove by induction on |ρ| that compρ satisfies the following

conditions:13

(CR1) if N ∈ compρ, then N is strongly normalizable;

(CR2) if N ∈ compρ and N ։β N
′, then N ′ ∈ compρ;

(CR3) if N is neutral and whenever one converts a redex of N a term N ′ ∈ compρ

is obtained, then N ∈ compρ.14

✷ If ρ is an atom, then

(CR1) is trivial;

12This is clearly an inefficient algorithm, since the proof that ν(Mπ) is well-define depends
on Köning’s Lemma, which is non-constructive. But there exist more efficient ways of com-
puting these bounds, as is proved in [32].

13Types will be here omitted to facilitate readability, since they can be easily derived from
the context.

14Note that the following is a special case of (CR3):
(CR4) if Nρ is neutral and normal, then N ∈ compρ.

2. Simple Type Theory 18

(CR2) holds for if N is strongly normalizable so is any N ′ such that
N ։β N

′;

(CR3) follows from the fact that the number ν(N) is equal to the greatest
of the ν(N ′) + 1 (which are well-defined, since it is obvious that a
term is strongly normalizable iff there exists such a length-bound of
its normalizations) as N ′ varies over the one-step reductions of N , so
N is strongly normalizable.

✷ If ρ ≡ σ → τ , then N ∈ compρ iff all its applications to computable terms
are computable. Hence

to (CR1): Let N ∈ compρ and xσ be a typed-variable. The induction hy-
pothesis (CR3) for σ gives x ∈ compσ, hence Nx ∈ compτ , and
ν(N) ≤ ν(Nx), since from any reduction sequence N N ′ . . . starting
at N one can construct a reduction sequence Nx N ′x The in-
duction hypothesis (CR1) for τ assures ν(Nx) is finite, therefore N
is strongly normalizable;

to (CR2): If N ։β N ′ and N ∈ compρ, let P ∈ compσ. Then NP ∈ compτ

and NP ։β N ′P . By induction hypothesis (CR2) for τ we have
N ′P ∈ compτ , so N ′ ∈ compρ;

to (CR3): Assume that N is neutral and all the N ′ ’s one step from N are
computable. Let P ∈ compσ. By induction hypothesis (CR1) for σ,
P is strongly normalizable, so we can reason by induction on ν(P):
In one β-step NP reduces to

✸ N ′P , with N ′ ∈ compρ, so N ′P ∈ compτ ; or

✸ NP ′, with P ′ one β-step from P . P ′ ∈ compσ by induction
hypothesis (CR2) for σ, and ν(P ′) < ν(P), so by induction hy-
pothesis we have NP ′ ∈ compτ .

All possible cases are exhaust, since N is neutral, and so it has not
the form λx.P .

Thus the induction hypothesis (CR3) for τ gives NP ∈ compτ , and
so N ∈ compρ.

Finally we state the following claims:

(∗) If, for all P ∈ compσ, N [P/x] ∈ compτ , then λx.N ∈ compσ→τ .

(∗∗) Given any term Nρ such that FV (N) ⊆ {xσ1

1 , . . . , xσn
n },

if Q1 ∈ compσ1
, . . . , Qn ∈ compσn , then N [Q1/x1, . . . , Qn/xn] ∈ compρ.

Proof of the claims.
(∗) is proved by an easy induction on ν(P) + ν(N).
(∗∗) is proved by induction on |N |, using (∗).

The main result now follows by (CR1) from (∗∗) for Mπ and Qσi

i :≡ xσi

i .

As usual, we can now shift to λA
→ and state the following

3. Curry-Howard Isomorphism 19

Corollary 2.5.3 (SN for λA
→

). If M is a λA
→

-typable term, every β-reduction
that starts at M is finite.

Proof. It follows from Fact 2.3.2 and Theorem 2.5.2.

We conclude noting that this result can be extended to βη-reductions rea-
soning in a similar way: See [18, A2] for a detailed proof.

3 Curry-Howard Isomorphism

Curry-Howard isomorphism establishes a close correspondence between typed
λ-calculi and logical systems, allowing to think of the former as suitable
frameworks for discussing the functional objects which, according to the
BHK-interpretation, lie behind proofs developed in a given calculus.

3.1 Implicational fragment of I

Our exposition of this correspondence starts with a brief review of the
implicational fragment of intuitionistic propositional logic I→. Given in a
NJ-formulation, it amounts to the following rules

Γ1

...
α → β

Γ2

...
α

→-elim
β

Γ, [α]

...
β

→-intro: α
α → β

Here α, β, . . . are used for I→-formulae, built up from propositional vari-
ables using implicational only; Γ, Γ1, Γ2, . . . denote sets of assumptions. In
→-intro, a certain number (possibly null) of occurrences of hypothesis α is dis-
charged, so that α → β in the conclusion depends only on Γ r {α}. We write
I→ ⊢ α for ‘α is provable in I→’, and Γ ⊢I→ α for ‘α is derivable in I→ from
assumptions in Γ’.

Curry-Howard isomorphism can be formally stated in the following way:

Theorem 3.1.1 (Curry-Howard Theorem).

(i) The provable formulae in I→ are exactly the types of closed λA
→

-terms.

(ii) α1, . . . , αn ⊢I→ β iff there exists M and distinct x1, . . . , xn such that
x1 : α1, . . . , xn : αn ⊢λA

→

M : β.

(iii) There exists a one-to-one correspondence between λA
→-proofs and

I→-deductions (modulo ≡α).

Proof. (iii): Given a λA
→-deduction ∆ of Γ ⊢ M : τ , define a I→-deduction ∆L

as follows:

◦ If M ≡ x and ∆ ≡ x : τ ⊢ x : τ , put ∆L :≡ τ ;

3. Curry-Howard Isomorphism 20

◦ If M ≡ M1M2, Γ = Γ1 ∪ Γ2, and

∆ ≡

∆1

Γ1 ⊢ M1 : σ → τ

∆2

Γ2 ⊢ M2 : σ

Γ1 ∪ Γ2 ⊢ M1M2 : σ

, put

∆L :≡
∆1L

σ → τ
∆2L

σ
τ

;

◦ If M ≡ λx.M1, τ ≡ ρ → σ, Γ = Γ′ − x, and

∆ ≡
∆′

Γ′ ⊢ M1 : σ

Γ ⊢ λx.M1 : ρ → σ

, construct ∆L by applying →-intro to ∆′

L

and discharging all occurrences of ρ in ∆′

L whose positions are the
same as the positions of the free occurrences of x in M1.

Conversely to each I→-deduction Π define a λA
→

-deduction Πλ as follows:

◦ if Π ≡ α, then Πλ :≡ x : α ⊢ x : α;

◦ if Π ≡

Π1

α → β
Π2

α

β

, then Πλ is obtained by applying →-elim to

the conclusions of Π1λ
and Π2λ

respectively;

◦ if Π ≡

Γ
...
β

→-intro: α
α → β

, then

Π′

λ :≡
...

Γ, y1 : α, . . . , yk : α ⊢ M1 : β
, where y1, . . . , yk are dis-

tinct and occur free in M1 at the same positions as the k occurrences
of α discharged by →-intro in Π. Now, if that discharge is not
vacuous, replace all of y1, . . . , yk by one new variable x that
does not occur in Π′

λ, so that Π′

λ changes to a deduction of
Γ, x : α ⊢ M1[x/y1, . . . , x/yk]. Then apply →-intro to Π′

λ and put

Πλ :≡

...
Γ, x : α ⊢ M1[x/y1, . . . , x/yk]

Γ ⊢ λx.M1[x/y1, . . . , x/yk] : α → β

.

If k = 0, then Π′

λ :≡
...

Γ ⊢ M1 : β
, and define Πλ by applying

→-intro with a vacuous discharge of a new variable not in Π′

λ to
deduce Γ ⊢ λx.M1 : α → β.

Now, by a straightforward induction on |M |, we have that, for any
λA

→-deduction ∆, (∆L)λ ≡ ∆ modulo ≡α, and we can prove, by a straight-
forward induction on the length of Π, that for any I→-deduction Π,
(Πλ)L ≡ Π, and we are done.

(i): It follows immediately from (iii).

(ii): ‘If ’ direction follows from the definition of the function L from
λA

→-deductions to I→-deductions. Conversely, let Π has form

3. Curry-Howard Isomorphism 21

α1, . . . , αn

... ·
β

Apply →-intro n times to obtain a derivation Π′ of
α1 → α2 → . . . → αn → β, then construct Π′

λ , whose conclusion
will be ⊢ M : α1 → α2 → . . . → αn → β for some closed M .

Hence, by the subject-construction lemma, M ≡ λx1 . . . xn.M1 for
some M1 and distinct x1, . . . , xn, and Π′

λ must contain the formula
x1 : α1, . . . , xn : αn ⊢λA

→

M1 : β.

Corollary 3.1.2. To decide whether a formula α is provable in I→ it suffices
to decide whether there exists a closed typed-term Mα.

Proof. From Theorem 3.1.1 we have that the decidability of α is equivalent to
the decidability of the existence of a closed M such that ⊢λA

→

M : α. The result
follows from Lemma 2.3.1.

Remark 7. In [17, Ch. 8] a search algorithm is given to decide, for any type τ ,
whether the number of closed β-nf’s that receive type τ is finite or infinite; it
will compute this number in the finite case, and will list all the relevant terms in
both cases. This gives, by the Curry-Howard Theorem, a test for provability in
I→. Despite a decision procedure for I→ has been known long time before these
results were established,15 the search algorithm can be thought of as generating
all the irreducible I→-deductions of the formula τ , for the propositions-as-types
correspondence we have just proved.

3.2 Substructural Logics

Curry-Howard isomorphism can be “extended” toward different directions, but
before we explore these wider horizons, we decided to investigate the relevance
of thinking of λA

→
-terms as proofs, starting with the following

Definition 3.1.

• A λ-term M is called λI-term iff, for each subterm with form λx.M1 in
M , x occurs free in M1 at least once.

• A λ-term M is called BCKλ-term iff

(i) for each subterm λx.M1 of M , x occurs free in M1 at most once;

(ii) each free variable of M has just one occurrence free in M .

• A λ-term M is called BCIλ-term iff

(i) for each subterm λx.M1 of M , x occurs free exactly once in M1;

(ii) each free variable of M has just one occurrence free in M .16

15See [13].
16Informally, we can refer to λI-terms as terms without vacuous binding, BCKλ-terms as

terms in which each subterms has at most one non-bound occurrence of each variable, and
BCIλ-terms as terms which are both λI- and BCKλ-terms.

3. Curry-Howard Isomorphism 22

Recall now that a logic is said relevant when vacuous discharge in →-intro of
the relative calculus is not allowed, and contraction-free when multiple discharge
is not allowed. Therefore it is pure routine to check

Fact 3.2.1. The following hold:

(i) The provable formulae in the implicational fragment of relevant intuition-
istic propositional logic are exactly the types of the closed λI-terms.

(ii) The provable formulae in the implicational fragment of contraction-
free intuitionistic propositional logic are exactly the types of the closed
BCKλ-terms.

(iii) The provable formulae in the implicational fragment of contraction-free
relevant intuitionistic propositional logic are exactly the types of the closed
BCIλ-terms.

Thus, in spite of limitations of λA
→

, reasoning inside such a basic typed
system gives relevant informations about the kind of proofs we are dealing with,
establishing in a neat and clear way their structural properties.

Note also that Curry-Howard isomorphism sheds a light on the PT algo-
rithm: In virtue of this propositions-as-types correspondence, the method for
constructing the condensed detachment formula in an Hilbert-style system is the
same as the core of the very PT algorithm, so that the existence of M∗ in the
converse PT-algorithm results equivalent to the completeness of the condensed
detachment rule for I→, and similarly for the corresponding substructural sys-
tems defined by λI-, BCKλ-, and BCIλ-terms. See [26] for the first exposition
of D-computation and [17, 7D] for the correspondence with λ-systems.

3.3 Intuitionistic Proofs as Programs

We focus now to some extensions of simple type theory, starting with the system
obtained defining a new type, named ‘product-type’. Here and in the following
sections we will work with Church’s typing only, so that all terms will be typed-
terms w.r.t. a given context, which will be omitted unless necessary. We shall
also avoid the formalism of the previous sections: The reader should by now be
able to recognize the usual techniques and reasoning paths.

First, define inductively the class of types T in the following way:

τ ∈ T := a | ρ → σ | ρ× σ .

Consequently, extend the set of typed-terms to the following set:

M τ ∈ ΛT := xτ | (Mρ→σ
1 Mρ

2)σ | (λxρ.Mσ
1)ρ→σ | 〈Mρ

1 ,M
σ
2 〉ρ×σ | (π1.Nρ×σ)ρ | (π2.Nρ×σ)σ .

Next define the relation ≫ of reduction among terms such that

M ≫ M ′ iff there exists a sequence M ≡ M0 M1 . . . Mn ≡ M ′ such that, for
i = 0, 1, . . . , n − 1, Mi+1 is obtained from Mi by replacing one of the
following redexes by its corresponding contractum:

3. Curry-Howard Isomorphism 23

redex contractum

(λxσ .N τ)P σ (N [P σ/xσ])τ

π1.〈N,P 〉σ×τ Nσ

π2.〈N,P 〉σ×τ P τ

Using standard methods it is also possible to prove

Fact 3.3.1. ≫ has the Church-Rosser Property.

As a consequence, we have that a denotational calculus of ≫-reduction
is consistent: Defining ≫-nf’s in the natural way, the Church-Rosser property
implies, for any term, the uniqueness of ≫-nf, so that denotational consistency
is shown by the fact that if xτ 6≡ yτ are ≫-nf’s, then if we could prove xτ =≫ yτ ,
by the Church-Rosser property there would exists an M τ such that xτ ≫ M τ

and yτ ≫ M τ , contra our assumption.
Moreover, both WN and SN Theorems can be extended to this system:

Theorem 3.3.2 (Weak Normalization Theorem). For every M τ ∈ ΛT , there
exists a ≫-nf.

Proof Sketch. The idea is the same as that used to prove WN for β-nf’s. One
only has to extend definitions of type-degree by

∂(ρ× σ) := ∂(ρ → σ);

redex-degree by
∂(πi.〈Nρ, P σ〉) := ∂(ρ× σ);

and then consider the additional cases related to the product-type, reasoning as
is done in proving Theorem 2.4.1. Details are left to the reader.

Theorem 3.3.3 (Strong Normalization Theorem). For every Mπ ∈ ΛT , all
reductions of M τ are finite.

Proof Sketch. Reasoning as in proof of Theorem 2.5.2, define a new predicate
ĉompρ by adding to the conditions defining inductively compρ the following:

◦ for ρ ≡ σ × τ , Nρ ∈ ĉompρ iff π1.Nρ ∈ ĉompσ and π2.Nρ ∈ ĉompτ .

Then say a term to be neutral if it is not an abstraction or a pair.
Next prove by induction on ρ that (CR1)-(CR3) hold for ĉompρ, consider-

ing the case of product-type (which is treated similarly to the arrow-type). Now
it is pure routine to check that if N,P are computable, so is 〈N,P 〉: Use this
fact to easily prove the homologous to (∗) and (∗∗). Finally, the result follows
from the latter claim in the obvious way.

Curry-Howard isomorphism permits a functional reading of proofs in
∧,→-fragment of I, once one recognize the following mapping:

3. Curry-Howard Isomorphism 24

Π ≡ τ 7−→ xτ
i , where i is the parcel of the hypothesis τ

Π ≡
Π1

τ
Π2

σ
τ ∧ σ

7−→ 〈M τ , Nσ〉, where M τ , Nσ correspond to Π1 and Π2 resp.

Π ≡
Π′

τ ∧ σ
τ

7−→ π1.M τ×σ, where M τ×σ corresponds to Π′

Π ≡
Π′

τ ∧ σ
σ

7−→ π2.M τ×σ, where M τ×σ corresponds to Π′

Π ≡
Π′

σ
τ → σ

7−→ λxτ
i .M

σ, where Mσ corresponds to Π′ and i is the parcel

of discharged hypotheses τ

Π ≡
Π1

τ → σ
Π2

τ
σ

7−→ M τ→σN τ , where M τ→σ, N τ correspond to Π1 and Π2 resp.

On this perspective, normalizations results assure the terminating of any
procedure to eliminate detours in natural deduction proofs of this fragment of
intuitionistic propositional logic. But this holds for propositional NJ as a whole,
once the following types and operator are added to the functional calculus.

∨ corresponds to sum-type:

◦ (ι1.M τ)τ+σ;

◦ (ι2.Nσ)τ+σ;

◦ (δxρ.M τyσ.N τP ρ+σ)τ , where δ bounds all occurrences of xρ in M τ and
all occurrences of yσ in N τ .

Consequently, the following conversions can be read as local eliminations of
detours involving ∨,∧ and →:

• δx.My.Nι1.P ≫ M [P/x]

• δx.My.Nι2.P ≫ N [P/y]

• πi.δx.My.NP ≫ δx.πi.My.πi.NP

• (δx.My.NP)Q ≫ δx.(MQ)y.(NQ)P

• δx′.M ′y′.N ′(δx.My.NP) ≫ δx.(δx′.M ′y′.N ′M)y.(δx′.M ′y′.N ′N)P .

⊥ corresponds to the empty-type Emp:

◦ to this a canonical function ετ from Emp to each type τ is associated such
that

(ετM
Emp)τ ,

which clearly corresponds to ⊥-elimination.

4. Gödel’s System T 25

We have the following conversions:

• πi.(ετ1×τ2
M) ≫ ετiM

• (ετ→σM)N τ ≫ εσM

• ετ (εEmpM) ≫ ετM

• δxτ .Myτ .N(ερ+σP) ≫ ετP .

Finally, considering the conversion

ετ (δx.My.NP) ≫ δx.(ετM)y.(ετN)P,

we obtain the complete engine of functional calculus associated to NJ-deductions
of propositional intuitionistic logic.

Normalization results can be extended to this calculus by means of the
methods we used so far modulo some necessary technical adjustments concerning
terms reducibility: For the details see [30].

Accordingly, one could say that propositions-as-types correspondence is
indeed an isomorphism between NJ-proofs and typed-terms: The structural
concepts of detour-elimination and normalization introduced independently in
these system are preserved by the Curry-Howard interpretation we discussed
here.

Adding specific operators for ∀− and ∃−rules, one obtains the λP1-calculus,
which is isomorphic from a proof-theoretic point of view to first-order NJ system.
Moreover, it is possible to define a correspondence between λP1 and simply
typed λ-calculus by means of a contracting map, so that λA

→ is indeed the core
of all computational significance of NJ-derivations.

4 Gödel’s System T

Turning now to mathematics, we can represent the computational content of
first-order theories of arithmetic by means of an extension of simple type theory
which has much more expressive power and corresponds to Gödel’s Dialectica
system T, conceived by its author to prove consistency of arithmetic.

To extract programs from proofs in a system of arithmetic one could define
a λ-calculus in which terms correspond exactly to proofs. This can be done
in a very compact way by means of a specific method (of realizability) where
first-order quantification is avoided in favour of a simple typed system we shall
denote by T.

4.1 Preliminary Definitions

Types of T are defined thus:

τ ::= a | Int | ρ → σ | ρ× σ,

where Int is an atomic type constant.

4. Gödel’s System T 26

Terms of T are those in ΛT with pairs and projections, and with the addition
of new constants 0, s, and Rτ (for all types τ) with types, respectively, Int,
Int → Int, and (Int → τ → τ) → τ → Int → τ .

≫ is extended to ≫T by means of the following reduction schemes:

RτMN0 ≫T N

RτMN(sP) ≫T MP (RτMNP).

Their intended meaning is obvious. Note however that Rτ could be
substituted by an iterator Itτ : (τ → τ) → τ → Int → τ such that
ItτMNsP ≫T M(ItτMNP) but this operator could correspond only to the
induction schema

∀x(ϕ(x) → ϕ(sx)) → ϕ(0) → ∀x(intx → ϕ(x));

since the recursion operator R corresponds to the induction schema

∀x(intx → ϕ(x) → ϕ(sx)) → ϕ(0) → ∀x(intx → ϕ(x)),

It it is indeed weaker that R, and makes many functions definable only by
values.

Notational Convention 6. By now the reader should be familiar with typed-
terms: For this reason, to facilitate the exposition, we shall use various (but
already known) notations to indicate the type of a term. Moreover, we shall
omit at all types unless compulsory.

4.2 Normalization

Despite our adding, the main result about normalization holds for T:

Theorem 4.2.1 (Strong Normalization Theorem). ≫T is strongly normalizing.

Proof Sketch. We proceed as usual extending Tait’s method: First define a new
notion of neutrality such that a term M is said neutral iff it has one of the
following form

x M1M2 π1.M ′ π2.M ′ .

Next assume the definition of ĉompτ , and extend it to compτ by considering
Int as an atom. Hence we have:

◦ 0 ∈ compInt: obvious, since terms of atomic type are computable iff
strongly normalizable;

◦ if M ∈ compInt, then sM ∈ compInt: ν(M) = ν(sM);

◦ if M,N,P are computable, then so is RMNP : by induction on
ν(M) + ν(N) + ν(P) + \P\, where \P\ is the number of symbols of P -nf;
a one step reduction of RMNP gives one of the following

• RM ′N ′P ′, with M ′, N ′, P ′ obtained by one step reduction, so that
we can reason inductively;

• N , when P ≡ 0, which is computable by hypothesis;

4. Gödel’s System T 27

• MQ(RMNQ) with P ≡ sQ, thus by induction hypothesis17 RMNQ
is computable, and so are M,Q; hence MQ(RMNQ) is computable
by definition.

Finally the homologous of (∗)-(∗∗), provable in the usual way, give the
result.

Corollary 4.2.2. ≫T has the Church-Rosser Property.

Proof. By an easy induction on length of ≫T-reduction we can prove that ≫T

has the Weak Church Rosser Property:

(WCR) For any M if M ≫T M ′ in one step and M ≫T M ′′ in one step, then
there exists an M1 such that M ′ ≫T M1 and M ′′ ≫T M1.

The result follows now from Theorem 4.2.1 by the following claim:

(⋆) For any relation ≻ on a set X , if ≻ has Weak Church-Rosser property and
is strongly normalizing, then it has Church-Rosser property.

Proof of (⋆). Assume M,N1, N2 ∈ X , M ≻ N1 and M ≻ N2 with N1 6≡ N2

such that they are ≻-nf. Hence Church-Rosser property does not hold for ≻.
Now we prove that for any such an M there exists an M ′ such that it ≻-reduces
to two normal forms M ≻ M ′, against the hypothesis of strong normalization.

Since N1 6≡ N2, there exist M1 and M2 such that M ≻ M1 in one step,
M ≻ M2 in one step, and M1 ≻ N1 and M2 ≻ N2:

• If M1 ≡ M2 then put M ′ :≡ M1 ≡ M2;

• Else, by Weak Church-Rosser property, there exists an N3 such that
M1 ≻ N3 and M2 ≻ N3. We can assume N3 is a ≻-nf, and then put
M ′ :≡ M1 or M ′ :≡ M2.

Hence if Strong Normalization holds, there cannot exist such an M ∈ ΛT , and
Church-Rosser property also holds.

4.3 Kreisel’s Modified Realizability

Because SN holds, T can be seen as a powerful programming language where
all well-typed programs terminate. In this language we can state facts about
numbers, since every term of type Int has sn0 as canonical form.

But T is in fact much more expressible: We will now show its power starting
with some definitions that slightly modify the notion of realizability due to
Kleene.18

Definition 4.1. We first add a new fresh constant i to terms of T and we assign
to i a fresh type-constant 1.

17ν(Q) = ν(P), but \Q\ < \P \.
18See [20] for the original definition of realizability.

4. Gödel’s System T 28

◦ For each type τ over this extended language we define ‖τ‖, which is 1 free
or equal to 1, as the canonical form of τ w.r.t. the following reductions:

τ × 1 ✄ τ
1 × τ ✄ τ
τ → 1 ✄ 1

1 → τ ✄ τ .

◦ For M of type ‖τ1 × τ2‖ define

πτ1τ2

i (M) :=

πi.M if ‖τ1‖, ‖τ2‖ 6= 1

i if ‖τi‖ = 1

M if ‖τi‖ 6= 1 and ‖τ3−i‖ = 1.

◦ For M of type ‖τ1 → τ2‖ and N of type ‖τ1‖, define

(MN)τ1τ2 :=

MN if ‖τ1‖, ‖τ2‖ 6= 1

i if ‖τ2‖ = 1

M if ‖τ1‖ = 1 and ‖τ2‖ 6= 1.

We shall omit the superscripts whenever τ1 and τ2 are derivable from the con-
text.

Now we can start our extraction of programs from proofs in Heyting first-
order theory of Arithmetic HA.19

Definition 4.2. A forgetful map ♭ from formulas of arithmetic to types of T

extended with 1 is defined by the following clauses:

♭(⊥) := 1

♭(s = t) := 1

♭(∃xϕ) := ‖Int × ♭(ϕ)‖

♭(∀xϕ) := ‖Int → ♭(ϕ)‖

♭(ϕ ∧ ψ) := ‖♭(ϕ) × ♭(ψ)‖

♭(ϕ → ψ) := ‖♭(ϕ) → ♭(ψ)‖.20

Definition 4.3. The notion of m-realizability of a closed formula of HA ϕ by
a closed term M of type ♭(ϕ) is defined inductively:21

◦ i : 1 m-realizes t = s iff t and s rewrite to the same numeral;

19For a detailed analysis of Heyting Arithmetic see [38]. Here we will abuse the notation
about variables, provability, and the structure of derivation in these system, but the context
should make clear case by case whether we are talking about T or HA.

20Recall that disjunction is definable in HA: That is the reason why we do not need for
sum-type in T.

21Here we indicate by an underline the numerals of HA, while the overline is reserved for
numerals of T. These are the result of the contracting map from λP1 to simply type calculus
given in [34, Ch.8]: Individuals get erased by the contraction c(inta) = Int, and what is left
are proofs that given individuals are natural numbers. Thus n is not obtained by contracting
n, but by contracting a proof of being n a legal number.

4. Gödel’s System T 29

◦ M : ‖Int × ♭(ψ)‖ m-realizes ∃xψ iff π1(M) =T n for some n and π2(M)
m-realizes ψ[n/x];22

◦ M : ‖Int → ♭(ψ)‖ m-realizes ∀xψ iff Mn m-realizes ψ[n/x] for all n;

◦ M : ‖♭(ϕ) × ♭(ψ)‖ m-realizes ϕ ∧ ψ iff π1(M) m-realizes ϕ and π2(M)
m-realizes ψ;

◦ M : ‖♭(ϕ) → ♭(ψ)‖ m-realizes ϕ → ψ iff MN m-realizes ψ whenever N
m-realizes ϕ;

◦ No term m-realizes ⊥.

A term M is said to m-realize a HA-derivation

γ1, . . . , γn

...
ϕ

whenever it realizes γ1 → . . . → γn → ϕ.
A formula or a proof is m-realizable when it is m-realized by some term.

It is easy to prove (by induction on ϕ) the following

Fact 4.3.1.

(i) If M m-realizes ϕ[t/x], and t and s convert to the same numeral, then M
m-realizes ϕ[s/x].

(ii) Let M,N be i-free terms such that M =T N . If M m-realizes ϕ, then so
does N .

Notational Convention 7. Despite the absence of i among m-realizers, we con-
veniently identify

〈i,M〉 with M
〈M, i〉 with M
λxσ.i with i

λxτ .M with M when ‖τ‖ = 1,

in addition to what is stated by Definition 4.1.

Theorem 4.3.2. Every theorem of HA is m-realizable.

Proof. By induction on the derivation.
It is routine to check that axioms are m-realizable.

The only case that needs for care is the induction scheme: If ‖ϕ‖ = 1,
then 1 m-realizes the whole scheme, so let ‖ϕ‖ 6= 1. Let P m-realizes
the induction step and let Q m-realizes the basis. Clearly, for n > 0,
the term Pn− 1(Pn− 2(. . . (P1(P0Q)) . . .) m-realizes ϕ(n). Then the term
M :≡ λpqn.R♭(ϕ)pqn m-realizes the induction scheme.

The cases of propositional rules are straightforward and are left to the
reader.

Suppose now the HA-proof has form

22Note that ♭ does not distinguish between algebraic terms.

4. Gödel’s System T 30

Γ
...

∀xψ

ψ[t/x]

where Γ := {γ1, . . . , γk}, ‖γi‖ := σi, and free variables in Γ ∪ ψ[t/x] are

z1, . . . , zr := ~z. Assume M m-realizes the fragment

Γ
...

∀xψ

and x ∈ FV (ψ).

Then all free variables in t are among ~z, and t induces an integer function
definable in T by a term λ~y.T .23 But T [n1/y1, · · · , nr/yr] ≫T m whenever
t[n1/z1, · · · , nr/zr] converts to m, so, by Fact 4.3.1(ii), ψ[t/x] is m-realized by
λ~y ~w.M~y ~wT where ~w abbreviates w1 : σ1, . . . , wk : σk. If x /∈ FV (ψ), then
ψ[t/x] ≡ ψ, so the HA-derivation is m-realized simply by λ~y ~w.M~y~w(vInt).

Now assume the proof has form

Γ
...

ψ[t/x]

∃xψ

and M m-realizes the fragment

Γ
...

ψ[t/x]

. Let λ~y.T define the function induced

by t. Then λ~y ~w.〈T,M~y〉 m-realizes the given proof.
The remaining cases are similar and are left to the reader.

Corollary 4.3.3. HA is consistent.

Proof. By Definition 4.3 no term m-realizes ⊥, so, by Theorem 4.3.2, HA 6⊢ ⊥.

Note that the proof of Theorem 4.3.2 is actually constructive: We do con-
struct a realizer for any theorem of HA, and if HA ⊢ ∀x∃yψ(x, y) with ψ atomic,
then its realizer is a program computing a function f satisfying ψ(n, f(n)) for
all n. Modifying the notion of m-realizability similarly to ⊢-realizability in [34,
9.6] the result is extended to arbitrary ψ: That is what computer scientists call
program extraction, of which Curry-Howard Isomorphism can be think of as a
“coarse-grained” version where the extraction process amounts to deleting all
computationally irrelevant contents from the intuitionistic proof.

23A function f : Nj −→ N is definable in T by a closed term F iff

1. F has type

j-times
︷ ︸︸ ︷
Int → . . . → Int → Int

2. F m1 . . . mj =T f(m1, . . . , mj), for all m1, . . . , mj ∈ N.

4. Gödel’s System T 31

4.4 Expressive Power

We conclude this exposition of T using the machinery of realizability to charac-
terize the expressive power of this system.

First note that an “upper bound” can already be stated, after a preliminary

Definition 4.4.

◦ Consider an enumeration {Mk} of all Turing Machines such that given an
input ~n ∈ Nj return an output m ∈ N. Define Kleene’s T predicate such
that

T(k, ~n,m) iff Mk halts on input ~n in r(m) steps with output ℓ(m).24

In [21] it is proved that T is primitive recursive.

◦ Let f be computed by the machine Mk. Then the characteristic function
of T(k, ·, ·) is denoted by tf :

tf (~n,m) = 0 iff Mk halts on input ~n in r(m) steps with output ℓ(m).

◦ A recursive function f is said to be provably total in a theory T iff
T ⊢ ∀~x∃y(tf (~x, y) = 0).

Lemma 4.4.1. All functions definable in T are provably total in PA.25

Proof. Any term F : Int → Int induces a function f : N −→ N such that

f(n) = m iff Fn ≫T m.

This f is clearly calculable by constructing a finitely branching normalization
tree. Hence, for an appropriate primitive recursive tf , proving the formula
∀x∃y(tf (x, y) = 0) amounts to proving that all applications of the form Fn are
strongly normalizable. In Tait’s method one has to consider only finitely many
computability predicates dependent on type and then reason by induction on
them, so that the proof relative to this F can be carried out in PA modulo an
appropriate arithmetical coding.

Next we have

Theorem 4.4.2. All function provably total in first-order arithmetic26 are de-
finable in T.

24Here ℓ and r are the (primitive recursive) converse functions of the primitive recursive
pairing bijection

p(m, n) =
(m + n)(m + n + 1)

2
+ m.

25PA is the first-order theory of Peano Arithmetic: It is characterized by the usual axioms
for s and 0, defining axioms for functions sum and product, and the usual induction scheme,
so that its axiomatization differs from that of HA only for the presence in the latter of defining
axioms for all recursive functions (not only + and ·).

26We do not have to distinguish between PA or HA, for these systems are equivalent in
proving totality of algorithms: See [34, Ch.9].

REFERENCES 32

Proof. Assume HA ⊢ ∀x∃y(tf (x, y) = 0). By Theorem 4.3.2 we have an M
which m-realizes the formula. Thus, for any n, Mn m-realizes ∃y(tf (n, y) = 0),
π1(Mn) =T m for some m, and π2(Mn) m-realizes tf (n,m) = 0. Since the
latter is an m-realized atomic formula, tf (n,m) = 0 does hold, hence f(n) is
the left component of m. Therefore f is defined by λx.L(π1(Mx)) where L
defines the function ℓ, and we are done.

Together with Lemma 4.4.1, this gives

Theorem 4.4.3. The functions definable in T are exactly the provably total
functions of first-order arithmetic.

Corollary 4.4.4. The SN Theorem for T is independent from PA.

Proof. Consider an effective enumeration {Fn} of closed terms of T with type
Int → Int and let g(n, k) be the length of the longest reduction sequence
beginning with Fnk. If g was provably total in first-order arithmetic, there
would be a term G that defines it in T.

Now proceed by a typical diagonalization argument, defining a term

H :≡ λx.RInt(λyv.sy)0(s(Gxx)).

A little thought shows that H cannot occur in {Fn}, so g is not definable. But
if SN was provable in PA, we could prove the totality of g. Hence the result.

References

[1] S. Abramsky, D.M. Gabbay, T.S.E. Maibaum (eds.), Handbook of
Logic in Computer Science, Vol.2, Oxford University Press 1992.

[2] H.P. Barendregt, The Lambda Calculus, North-Holland 1984.

[3] H.P. Barendregt, Lambda calculi with types, in [1].

[4] L. Borkowski, Jan Lukasiewicz Selected Works, North-Holland 1970.

[5] A. Church, A formulation of the simple theory of types, in Journal of
Symbolic Logic 5, 1940.

[6] C. Cohen, T. Coquand, S. Huber, A. Mörtberg, Cubical Type
Theory: a constructive interpretation of the univalence axiom, in arXiv
1611.02108 November 2016 (Preprint).

[7] T. Coquand, Inductive definitions and type theories. An introduction, pre-
liminary draft for August 1999 TYPES Summer School.

[8] R. Cori, A. Razborov, S. Todorcevic, C. Wood (eds.), Logic Collo-
quium 2000, A.K. Peters 2001.

[9] A.G. Dragalin, The computability of primitive recursive terms of finite
type, and primitive recursive realization, in [33].

REFERENCES 33

[10] A.G. Dragalin, Mathematical Intuitionism. Introduction to Proof Theory,
AMS 1988.

[11] J.E. Fenstad, Proceedings of the Second Scandinavian Logic Symposium,
North-Holland 1971.

[12] J.H. Gallier, On Girard’s “candidats de reductibilité ”, in [28].

[13] G. Gentzen, Untersuchungen über das logische Schliessen, in Math.
Zeitschrift 39 (1935); English translation in [35].

[14] J.-Y. Girard, Y. Lafont, P. Taylor, Proofs and Types, Cambridge
University Press 1989.

[15] K. Gödel, Über eine bisher noch nicht benütze Erweiterung des finiten
Standpunktes, in Dialectica 12, 1958; English translation in Journal of
Philosophical Logic 9, 1980.

[16] A. Grzegorczyk, Recursive objects in all finite types, in Fundamenta
Mathematicae LIV, 1964.

[17] J.R. Hindley, Basic Simple Type Theory, Cambridge University Press
1997.

[18] J.R. Hindley, J.P. Seldin, λ-Calculus and Combinators. An introduc-
tion, Cambridge University Press 2008.

[19] B. Jacobs, Categorical Logic and Type Theory, North-Holland 1999.

[20] S.C. Kleene, On the interpretation of intuitionistic number theory, in
Journal of Symbolic Logic 10(4), 1945.

[21] S.C. Kleene, Introduction to Metamathematics, North-Holland 1952.

[22] G. Kreisel, On weak completeness of intuitionistic predicate logic, in Jour-
nal of Symbolic Logic 27(2), 1962.

[23] J. Lambek, The mathematics of sentence structure, in American Mathe-
matical Montly 65, 1958.

[24] F.W. Lawvere, Quantifiers and Sheaves, in Actes du Congrès Interna-
tional des Mathématiciens, Nice 1970.

[25] J.R. Longley, Notions of computability at higher types, in [8].

[26] J. Lukasiewicz, Der Äquivalenzenkalkul, in Collectanea Logica 1 (1939);
English translation in [4].

[27] P. Martin-Löf, Truth of a proposition, evidence of a judgement, validity
of a proof, in Synthese 73, 1987.

[28] P. Odifreddi (ed.), Logic and Computer Science, Academic Press 1990.

[29] D. Prawitz, Natural Deduction, Almqvist and Wiskell 1965.

[30] D. Prawitz, Ideas and results in proof theory, in [11].

REFERENCES 34

[31] J.A. Robinson, A machine-oriented logic based on the resolution principle,
in Journal of Association for Computing Machinery 12, 1965.

[32] H. Schwichtenberg, An upper bound for reduction sequences in typed
lambda-calculus, in Archive für Math. Logik 30, 1991.

[33] A.O. Slisenko, Studies in Constructive Mathematics and Mathematical
Logic II, Steklov Mathematical Institute 1970.

[34] M.H.B. Sørensen, P. Urzyczyn, Lectures on the Curry-Howard Isomor-
phism, North-Holland 2006.

[35] M.E. Szabo (ed.), The Collected Papers of Gerhard Gentzen, North-
Holland 1969.

[36] W.W. Tait, Intensional interpretations of functionals of finite type I, in
Journal of Symbolic Logic 32(2), 1967.

[37] W.W. Tait, Gödel’s unpublished papers on foundations of mathematics,
in Philosophiae Mathematica 9, 2001.

[38] A.S. Troesla, D. van Dalen, Constructivism in Mathematics. An In-
troduction, Vol.1, North-Holland 1988.

[39] The Univalent Foundations Program, Homotopy Type Theory. Uni-
valent Foundations of Mathematics, Institute for Advanced Study 2013.

	Introduction
	Type-free -calculus
	-calculus
	-calculus

	Simple Type Theory
	Basics of A
	Principal Type Algorithm for A
	Church's typing
	Weak Normalization Theorem
	Strong Normalization Theorem

	Curry-Howard Isomorphism
	Implicational fragment of I
	Substructural Logics
	Intuitionistic Proofs as Programs

	Gödel's System T
	Preliminary Definitions
	Normalization
	Kreisel's Modified Realizability
	Expressive Power

	References

