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Interpretability logics
[Visser 1988,1990], [de Jongh and Veltman 1990], · · ·

A � B 7−→ IntT(pA∗q, pB∗q) in interpretability logics

≈

2A 7−→ BewT (pA∗q) in provability logic



Interpretability logics
IL

I Axiom schemas of CPC;
I schema IL2 : (A � B)→ (B � C)→ (A � C);
I schema IL3 : (A � C)→ (B � C)→ (A ∨ B � C);
I schema IL-Löb: A � (A ∧ (A �⊥));

I MP Rule A→ B A
B

;

I �Rule A→ B
A � B

.

We define

2A := ¬A �⊥, and 3A := ¬2¬A.



Interpretability logics
Extensions

Let us define as proper extensions of IL
I ILM := IL+ M, where

M := (A � B)→ ((A ∧2C)� (B ∧2C))

is called the Montagna schema;
I ILP := IL+ P, where

P := (A � B)→ 2(A � B)

is called the persistence schema;
I ILW := IL+ W, where

W := (A � B)→ (A � (B ∧2¬A))

is called the de Jongh-Visser schema;
I ILKM1 := IL+ KM1, where

KM1 := (A �3>)→ (>� ¬A);

I ILM0 := IL+ M0, where

M0 := (A � B)→ ((3A ∧2C)� (B ∧2C));

Each of these extensions can be characterised in terms of GVS semantics by
imposing specific conditions to frames.



Interpretability logics
[Verbrugge 1992] semantics

A generalised Veltman frame F consists of
I a finite set W 6= ∅;
I a binary relation R ⊆W ×W which is irreflexive and transitive;
I a W -indexed set of relations Sx ⊆ R[x ]× (℘(R[x ])r {∅})

– where R[x ] is the set of R-accessible worlds from x ;
satisfying the following conditions:
I Quasi-reflexivity: if xRy then ySx{y};
I Definiteness: if xRyRz then ySx{z};
I Monotonicity: if ySxa and a ⊆ b ⊆ R[x ] then ySxb;
I Quasi-transitivity: if ySxa and vSxbv for all v ∈ a, then ySx(

⋃
v∈a bv).

x  A � B iff for all y if xRy and y  A, then there exists an a such that ySxa and a ∀ B,

– where a ∀ B abbreviates the expression “for any z ∈ a, z  B”.
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Design of good calculi
Formalising Verbrugge semantics

Verbrugge semantics is almost a geometric theory: each of its axioms has shape

∀~x , φ→ ψ

– where φ, ψ are FO formulas that do not contain ∀ or→.

Quasi-transitivity and finiteness are an exception.
However,
I finiteness is not a real issue here; and
I there exist several variants of quasi-transitivity, including

if ySxa and z ∈ a and zSxb, then ySxb,
which is geometric.

Therefore, it should be possible to formalise Verbrugge semantics into a sequent
system.
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I finiteness is not a real issue here; and
I there exist several variants of quasi-transitivity, including

if ySxa and z ∈ a and zSxb, then ySxb,
which is geometric.

Therefore,1 it should be possible to formalise Verbrugge semantics into a sequent
system.

1After [Negri and von Plato 2001].



Design of good calculi
Formalised semantic reasoning

(Hakoniemi and Joosten 2016) designed labelled tableaux – based on standard
Veltman semantics – for the basic system and some extensions; (Sasaki 2001)
provided a cut free standard sequent calculus for IL.

Here I propose a modular family of sequent calculi for IL and its extensions.

The general idea is to explicitly internalise GVS in the G3-paradigm, following the
well-established of labelling.
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G3IL?
Core system

Initial sequents

x : p, Γ⇒ ∆, x : p

(x, w) : A � B, Γ⇒ ∆, (x, w) : A � B

Classical propositional rules: the usual ones

Local forcing rules

x : A, x ∈ A, a ∀ A, Γ⇒ ∆
L∀

x ∈ A, a ∀ A, Γ⇒ ∆

x ∈ a, Γ⇒ ∆, x : A
R∀

(x!)
Γ⇒ ∆, a ∀ A

Intermediate modality rules

ySx a, a ∀ A, Γ⇒ ∆
L〈](a!)

y : 〈]x A, Γ⇒ ∆

ySx a, Γ⇒ ∆, y : 〈]x A, a ∀ A
R〈]

ySx a, Γ⇒ ∆, y : 〈]x A



G3IL?
Core system

Interpretability modality rules

y ∈ R[x], (x, w) : A � B, Γ ⇒ ∆, y : A y : 〈]w B, y ∈ R[x], (x, w) : A � B, Γ ⇒ ∆ y ∈ R[x], (x, w) : A � B, Γ ⇒ ∆, (y, w) : A � B
L�

y ∈ R[x], (x, w) : A � B, Γ ⇒ ∆

y ∈ R[x], y : A, Γ, (y, w) : A � B ⇒ ∆, y : 〈]w B
R�(y!)

Γ ⇒ ∆, (x, w) : A � B

(x ,w)  A � B iff for all y , if xRy and (y ,w)  A � B,
then, if y  A, y  〈]wB.



G3IL?
Core system

Rules for GVS

a ⊆ a, Γ ⇒ ∆
Refl⊆

Γ ⇒ ∆

a ⊆ c, a ⊆ b, b ⊆ c, Γ ⇒ ∆
Trans⊆

a ⊆ b, b ⊆ c, Γ ⇒ ∆

x ∈ b, x ∈ a, a ⊆ b, Γ ⇒ ∆
L⊆

x ∈ a, a ⊆ b, Γ ⇒ ∆

x ∈ {x}, Γ ⇒ ∆
Sing

Γ ⇒ ∆

Atm(y), Atm(x), y ∈ {x}, Γ ⇒ ∆
Repl1

Atm(x), y ∈ {x}, Γ ⇒ ∆

Atm(x), Atm(y), y ∈ {x}, Γ ⇒ ∆
Repl2

Atm(y), y ∈ {x}, Γ ⇒ ∆

where Atm(x) has one of the following forms: x : p, x ∈ a, x ∈ {z},x ∈ R[z], z ∈ R[x], xSz a, zSx a.

Irrefl
x ∈ R[x], Γ ⇒ ∆

z ∈ R[x], y ∈ R[x], z ∈ R[y], Γ ⇒ ∆
Trans

y ∈ R[x], z ∈ R[y], Γ ⇒ ∆

z ∈ a, ySx a, Γ ⇒ ∆
NE(z!)

ySx a, Γ ⇒ ∆

y ∈ R[x], a ⊆ R[x], ySx a, Γ ⇒ ∆
DefS1

ySx a, Γ ⇒ ∆

ySx{z}, y ∈ R[x], z ∈ R[y], Γ ⇒ ∆
DefS2

y ∈ R[x], z ∈ R[y], Γ ⇒ ∆

ySx b, ySx a, a ⊆ b, b ⊆ R[x], Γ ⇒ ∆
Mono

ySx a, a ⊆ b, b ⊆ R[x], Γ ⇒ ∆

ySx{y}, y ∈ R[x], Γ ⇒ ∆
Qrefl

y ∈ R[x], Γ ⇒ ∆

ySx b, ySx a, z ∈ a, zSx b, Γ ⇒ ∆
Qtrans6

ySx a, z ∈ a, zSx b, Γ ⇒ ∆



G3IL?
Rules for extensions

Additional rules for GVS

x ∈ a, y ∈ R[x], y ∈ R[a], Γ⇒ ∆
Rset1(x!)

y ∈ R[a], Γ⇒ ∆

y ∈ R[a], x ∈ a, y ∈ R[x], Γ⇒ ∆
Rset2

x ∈ a, y ∈ R[x], Γ⇒ ∆

ySx a, y ∈ S−1
x a, Γ⇒ ∆

Sset1
y ∈ S−1

x a, Γ⇒ ∆

y ∈ S−1
x a, ySx a, Γ⇒ ∆

Sset2
ySx a, Γ⇒ ∆

c ⊆ a, c ⊆ b, c ⊆ a ∩ b, Γ⇒ ∆
∩1

c ⊆ a ∩ b, Γ⇒ ∆

c ⊆ a ∩ b, c ⊆ a, c ⊆ b, Γ⇒ ∆
∩2

c ⊆ a, c ⊆ b, Γ⇒ ∆

L∅
x ∈ ∅, Γ⇒ ∆

Rules for interpretability principles – via semantics characterisation by [Verbrugge 1992], [Vuković 1999]

b ⊆ a, ySx b, R[b] ⊆ R[y], ySx a, Γ⇒ ∆
M(b!)

ySx a, Γ⇒ ∆

z ∈ a, Rz ⊆ R[y], ySx a, Γ⇒ ∆
KM1(z!)

ySx a, Γ⇒ ∆

b ⊆ a, zSy b, y ∈ R[x], z ∈ R[y], zSx a, Γ⇒ ∆
P(b!)

y ∈ R[x], z ∈ R[y], zSx a, Γ⇒ ∆

b ⊆ a, ySx b, R[b] ∩ S−1
x a ⊆ ∅, ySx a, Γ⇒ ∆

W(b!)
ySx a, Γ⇒ ∆

b ⊆ a, ySx b, R[b] ⊆ R[y], y ∈ R[x], z ∈ R[y], zSx a, Γ⇒ ∆
M0(b!)y ∈ R[x], z ∈ R[y], zSx a, Γ⇒ ∆



G3IL?
Structural completeness

Theorem (PB 2022)
Any calculus in the family G3IL? satisfies the following properties:
I Generalised initial sequents are derivable;
I Substitution rules for worlds and neighbourhoods are height-preserving

admissible;
I Weakening rules are height preserving admissible;
I All the rules are invertible;
I Contraction rules are admissible;
I Cut is admissible.

Some care is needed for proving cut elimination:
We had to generalise the strategy by [Negri 2005], and proceed by ternary
transfinite induction – main induction on the size of the cut formula, secondary
induction on the range of the cut label and tertiary induction on the cut height.



G3IL?
Structural completeness

Theorem (PB 2022)
Any calculus in the family G3IL? satisfies the following properties:
I Generalised initial sequents are derivable;
I Substitution rules for worlds and neighbourhoods are height-preserving

admissible;
I Weakening rules are height preserving admissible;
I All the rules are invertible;
I Contraction rules are admissible;
I Cut is admissible.

Some care is needed for proving cut elimination:
We had to generalise the strategy by [Negri 2005], and proceed by ternary
transfinite induction – main induction on the size of the cut formula, secondary
induction on the range of the cut label and tertiary induction on the cut height.



G3IL?
Semantic completeness

Each calculus in the family of G3IL? is sound and complete w.r.t. the appropriate
class of Verbrugge frames.
This is shown by interpreting derivations in frames – soundness – and, indirectly, by
proving the interpretability principles of each axiomatic calculus – completeness.



Future work
Termination and related results

Conjecture
There exists a strategy making proof search in G3KIL? for a sequent of the form
⇒ x : A always terminate in a finite number of steps. Moreover, from a failed proof
search, it is possible to extract a countermodel to A belonging to appropriate
class of generalised Veltman frames.a

aAlready proven for the flattened language.

3 A direct proof of completeness, via Schütte-Takeuti-Tait extraction of a
countermodel;

3 A certified theorem prover for IL and its extensions;
3 Considering further systems, e.g. ILP0 (not hard), ILR (not easy), ILF (not known).
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Many thanks for your attention!
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