Demo O

GL within HOL Light

Experiments on theorem provers within theorem provers

A project within the project "IT Matters: Methods and Tools for Trustworthy Smart Systems" (PRIN 2017FTXR7S)

Cosimo Perini Brogi IMT School for Advanced Studies Lucca

"Proof and Computation" Autumn School 2023

Picture credit: "The Magic of M.C. Escher", WikiMedia Commons

GL Librar

Demo O

Brief glance at HOL Light

(Harrison 2017)

- $\circ~$ Clean logical foundations \approx Principia Mathematica
- LCF-style proof checker based on polymorphic simple type theory \approx small class of *primitive inference rules* for creating theorems + *derived inference rules* to be programmed on top
 - \Rightarrow 10 primitive rules
 - \Rightarrow 2 conservative extension principles
 - \Rightarrow Axioms of choice, extensionality, and infinity
- $\circ~$ Written as an OCaml program \approx three datatypes for the logic: hol_type, term, and thm
- $\circ~$ Goal-directed proof development \approx tactic(al)s + automated methods (in the appropriate domains)

Despite its simple foundations, HOL Light includes a large library of mathematical results in topology, analysis, Euclidean geometry, QBF, floating point algorithms, FOL, limitative results, ...

Decision procedure <~

Code: https://github.com/jrh13/hol-light/, directory GL Paper: Mechanising Gödel-Löb provability logic in HOL Light, J. Autom. Reasoning 67, 29 (Open Access)

Demo •

Short Demo

Many thanks for listening!

