
Theorem provers within theorem provers
Experiments with modal logic in HOL Light ⋆

Cosimo Perini Brogi
IMT School for Advanced Studies Lucca

⋆ Based on joint work with Marco Maggesi and Rocco De Nicola
within the project “IT Matters: Methods and Tools for Trustworthy Smart Systems” (PRIN 2017FTXR7S)

Interactions of Proof Assistants and Mathematics
Regensburg, 18–29. Sept. 2023

Drawing Hands

Picture credit: “The Magic of M.C. Escher”, WikiMedia

Quis demonstrat ipsos demonstratores?

▶ Mathematical proofs are the most reliable form of verification.
▶ By computerising mathematics through deductive systems, we obtain a highest certificate

of correctness.
▶ But deductive systems are themselves study object of mathematics.
∴ Deductive systems could be formalised in proof assistants too.

Our goal
Current

• Use HOL Light
◦ as main environment to formalise results/theorems about syntax and semantics of (normal)

modal logics.
◦ to make precise the internalisation of semantics in the syntax of (many) contemporary proof

systems for modal logics.
◦ to mechanise proof search in (the formalised version of) those proof systems by defining new

specific tactics reflecting the rules of the proof system under investigation.
• As by-product, obtain a decision procedure implemented in HOL Light for the modal logic

under investigation, which works as a countermodel constructor to the input formula when
needed.

Our goal
Current

• Use HOL Light
◦ as main environment to formalise results/theorems about syntax and semantics of (normal)

modal logics.
◦ to make precise the internalisation of semantics in the syntax of (many) contemporary proof

systems for modal logics.
◦ to mechanise proof search in (the formalised version of) those proof systems by defining new

specific tactics reflecting the rules of the proof system under investigation.
• As by-product, obtain a decision procedure implemented in HOL Light for the modal logic

under investigation, which works as a countermodel constructor to the input formula when
needed.

Our goal
Long term

3 Our methodology is not strictly related to a specific modal system, and we might apply it
to logics relevant to e.g. system security and verification
⇒ “Proof-theoretic” alternatives to model checking, SATs, etc.

3 Since it is based on a formal counterpart to internalisation in proof systems, theoretical
advances in the latter can be rephrased in our setting, e.g. endowing possible worlds with
“structure”
⇒ Mechanised deductive systems for compositional/parametric process analysis

This talk
The prototype

GL library

Axiomatic calculus
lt

�&

Labelled sequent calculus

rr

Irreflexive transitive finite frames44

^^

Decision procedure
��

HH

Code: https://github.com/jrh13/hol-light/, directory GL
Paper: Mechanising Gödel-Löb provability logic in HOL Light, J. Autom. Reasoning 67, 29
(Open Access)

https://github.com/jrh13/hol-light/
https://github.com/jrh13/hol-light/tree/master/GL
https://link.springer.com/article/10.1007/s10817-023-09677-z

Outline

Introduction

Formalization
Syntax and semantics
Modal adequacy
Internal theorem prover

Demo

Brief glance at HOL Light
(Harrison 2017)

◦ Clean logical foundations ≈ Principia Mathematica
◦ LCF-style proof checker based on polymorphic simple type

theory ≈ small class of primitive inference rules for creating
theorems + derived inference rules to be programmed on
top

⇒ 10 primitive rules
⇒ 2 conservative extension principles
⇒ Axioms of choice, extensionality, and infinity

◦ Written as an OCaml program ≈ three datatypes for the
logic: hol_type, term, and thm

◦ Goal-directed proof development ≈ tactic(al)s +
automated methods (in the appropriate domains)

Despite its simple foundations, HOL Light includes a large library of mathematical results in topology,
analysis, Euclidean geometry, QBF, floating point algorithms, FOL, limitative results, . . .

Gödel-Löb Logic
Syntax

We consider a propositional modal language L2 whose formulas have one of the following
forms:

p | ⊤ | ⊥ | ¬A | A ∧ B | A ∨ B | A → B | A ↔ B | 2A.

GLaxiom, GLproves
GL denotes the axiomatic calculus made of:
▶ Axioms of CPC
▶ Axiom K : 2(A → B) → 2A → 2B

▶ Axiom GL : 2(2A → A) → 2A

▶ MP Rule A → B A
B

▶ Nec Rule A
2A

https://archive.softwareheritage.org/swh:1:cnt:e42639c66fe78808c04d8bedbb9ce84131562084;origin=https://github.com/jrh13/hol-light;visit=swh:1:snp:fe1b3b83e1dd2bde44d3698f723b25c949de2851;anchor=swh:1:rev:ab57c07ff0105fef75a9fcdd179eda0d26854ba3;path=/GL/gl.ml;lines=11-23
https://archive.softwareheritage.org/swh:1:cnt:e42639c66fe78808c04d8bedbb9ce84131562084;origin=https://github.com/jrh13/hol-light;visit=swh:1:snp:fe1b3b83e1dd2bde44d3698f723b25c949de2851;anchor=swh:1:rev:ab57c07ff0105fef75a9fcdd179eda0d26854ba3;path=/GL/gl.ml;lines=29-32

Gödel-Löb Logic
Relational semantics

A relational frame is made of a set of “possible worlds”W , together with an accessibility
relation R ⊆ W × W .

For GL, we consider irreflexive transitive finite frames (ITF):
▶ for no x ∈ W , xRx;
▶ if xRy and yRz, then xRz;
▶ W is a finite set.

By introducing a forcing relation x ⊩ A between worlds and formulas, we get a relational
model and a general notion of validity in a class of models (holds, holds_in, and valid).

https://archive.softwareheritage.org/swh:1:cnt:e42639c66fe78808c04d8bedbb9ce84131562084;origin=https://github.com/jrh13/hol-light;visit=swh:1:snp:fe1b3b83e1dd2bde44d3698f723b25c949de2851;anchor=swh:1:rev:ab57c07ff0105fef75a9fcdd179eda0d26854ba3;path=/GL/gl.ml;lines=152-158
https://archive.softwareheritage.org/swh:1:cnt:e96b1bf9513c5683d53e971912903fc13d21b282;origin=https://github.com/jrh13/hol-light;visit=swh:1:snp:fe1b3b83e1dd2bde44d3698f723b25c949de2851;anchor=swh:1:rev:ab57c07ff0105fef75a9fcdd179eda0d26854ba3;path=/GL/modal.ml;lines=40-55
https://archive.softwareheritage.org/swh:1:cnt:e96b1bf9513c5683d53e971912903fc13d21b282;origin=https://github.com/jrh13/hol-light;visit=swh:1:snp:fe1b3b83e1dd2bde44d3698f723b25c949de2851;anchor=swh:1:rev:ab57c07ff0105fef75a9fcdd179eda0d26854ba3;path=/GL/modal.ml;lines=57-58
https://archive.softwareheritage.org/swh:1:cnt:e96b1bf9513c5683d53e971912903fc13d21b282;origin=https://github.com/jrh13/hol-light;visit=swh:1:snp:fe1b3b83e1dd2bde44d3698f723b25c949de2851;anchor=swh:1:rev:ab57c07ff0105fef75a9fcdd179eda0d26854ba3;path=/GL/modal.ml;lines=62-63

Adequacy theorem
Soundness

Theorem (GL_ITF_VALID)
For any formula A, if GL ⊢ A, then ITF ⊨ A.

Corollary (GL_consistent)
Gödel-Löb logic is consistent.

https://archive.softwareheritage.org/swh:1:cnt:e42639c66fe78808c04d8bedbb9ce84131562084;origin=https://github.com/jrh13/hol-light;visit=swh:1:snp:fe1b3b83e1dd2bde44d3698f723b25c949de2851;anchor=swh:1:rev:ab57c07ff0105fef75a9fcdd179eda0d26854ba3;path=/GL/gl.ml;lines=169-174
https://archive.softwareheritage.org/swh:1:cnt:e42639c66fe78808c04d8bedbb9ce84131562084;origin=https://github.com/jrh13/hol-light;visit=swh:1:snp:fe1b3b83e1dd2bde44d3698f723b25c949de2851;anchor=swh:1:rev:ab57c07ff0105fef75a9fcdd179eda0d26854ba3;path=/GL/gl.ml;lines=176-182

Adequacy theorem
Completeness

Theorem (COMPLETENESS_THEOREM_GEN)
If GL ̸⊢ A, then there exists an irreflexive transitive finite model M such that M ⊭ A.

Proof.
We formalise (and adapt) the proof in (Boolos 1995), by working with finite lists of formulas.

This allows us to prove the theorem for models built on the type form list
(COMPLETENESS_THEOREM), which is unpleasant from a computational view-point.

Therefore, we generalise the result by
▶ defining the notion of bisimulation between models (BISIMULATION),
▶ proving that bisimilar structures satisfy the same formulas (BISIMILAR_VALID),
▶ defining a bisimulation between the list-based countermodel and its analogous based on

sets of formulas (GL_COUNTERMODEL_FINITE_SETS).

https://archive.softwareheritage.org/swh:1:cnt:157e9cb72fd39cbce15433fd62df9fa3fb310ed3;origin=https://github.com/jrh13/hol-light;visit=swh:1:snp:fe1b3b83e1dd2bde44d3698f723b25c949de2851;anchor=swh:1:rev:ab57c07ff0105fef75a9fcdd179eda0d26854ba3;path=/GL/completeness.ml;lines=846-892
https://archive.softwareheritage.org/swh:1:cnt:157e9cb72fd39cbce15433fd62df9fa3fb310ed3;origin=https://github.com/jrh13/hol-light;visit=swh:1:snp:fe1b3b83e1dd2bde44d3698f723b25c949de2851;anchor=swh:1:rev:ab57c07ff0105fef75a9fcdd179eda0d26854ba3;path=/GL/completeness.ml;lines=830-840
https://archive.softwareheritage.org/swh:1:cnt:e96b1bf9513c5683d53e971912903fc13d21b282;origin=https://github.com/jrh13/hol-light;visit=swh:1:snp:fe1b3b83e1dd2bde44d3698f723b25c949de2851;anchor=swh:1:rev:ab57c07ff0105fef75a9fcdd179eda0d26854ba3;path=/GL/modal.ml;lines=274-281
https://archive.softwareheritage.org/swh:1:cnt:e96b1bf9513c5683d53e971912903fc13d21b282;origin=https://github.com/jrh13/hol-light;visit=swh:1:snp:fe1b3b83e1dd2bde44d3698f723b25c949de2851;anchor=swh:1:rev:ab57c07ff0105fef75a9fcdd179eda0d26854ba3;path=/GL/modal.ml;lines=323-332
https://archive.softwareheritage.org/swh:1:cnt:157e9cb72fd39cbce15433fd62df9fa3fb310ed3;origin=https://github.com/jrh13/hol-light;visit=swh:1:snp:fe1b3b83e1dd2bde44d3698f723b25c949de2851;anchor=swh:1:rev:ab57c07ff0105fef75a9fcdd179eda0d26854ba3;path=/GL/completeness.ml;lines=1052-1073

Adequacy theorem
Completeness

Theorem (COMPLETENESS_THEOREM_GEN)
If GL ̸⊢ A, then there exists an irreflexive transitive finite model M such that M ⊭ A.

Proof.
We formalise (and adapt) the proof in (Boolos 1995), by working with finite lists of formulas.

This allows us to prove the theorem for models built on the type form list
(COMPLETENESS_THEOREM), which is unpleasant from a computational view-point.

Therefore, we generalise the result by
▶ defining the notion of bisimulation between models (BISIMULATION),
▶ proving that bisimilar structures satisfy the same formulas (BISIMILAR_VALID),
▶ defining a bisimulation between the list-based countermodel and its analogous based on

sets of formulas (GL_COUNTERMODEL_FINITE_SETS).

https://archive.softwareheritage.org/swh:1:cnt:157e9cb72fd39cbce15433fd62df9fa3fb310ed3;origin=https://github.com/jrh13/hol-light;visit=swh:1:snp:fe1b3b83e1dd2bde44d3698f723b25c949de2851;anchor=swh:1:rev:ab57c07ff0105fef75a9fcdd179eda0d26854ba3;path=/GL/completeness.ml;lines=846-892
https://archive.softwareheritage.org/swh:1:cnt:157e9cb72fd39cbce15433fd62df9fa3fb310ed3;origin=https://github.com/jrh13/hol-light;visit=swh:1:snp:fe1b3b83e1dd2bde44d3698f723b25c949de2851;anchor=swh:1:rev:ab57c07ff0105fef75a9fcdd179eda0d26854ba3;path=/GL/completeness.ml;lines=830-840
https://archive.softwareheritage.org/swh:1:cnt:e96b1bf9513c5683d53e971912903fc13d21b282;origin=https://github.com/jrh13/hol-light;visit=swh:1:snp:fe1b3b83e1dd2bde44d3698f723b25c949de2851;anchor=swh:1:rev:ab57c07ff0105fef75a9fcdd179eda0d26854ba3;path=/GL/modal.ml;lines=274-281
https://archive.softwareheritage.org/swh:1:cnt:e96b1bf9513c5683d53e971912903fc13d21b282;origin=https://github.com/jrh13/hol-light;visit=swh:1:snp:fe1b3b83e1dd2bde44d3698f723b25c949de2851;anchor=swh:1:rev:ab57c07ff0105fef75a9fcdd179eda0d26854ba3;path=/GL/modal.ml;lines=323-332
https://archive.softwareheritage.org/swh:1:cnt:157e9cb72fd39cbce15433fd62df9fa3fb310ed3;origin=https://github.com/jrh13/hol-light;visit=swh:1:snp:fe1b3b83e1dd2bde44d3698f723b25c949de2851;anchor=swh:1:rev:ab57c07ff0105fef75a9fcdd179eda0d26854ba3;path=/GL/completeness.ml;lines=1052-1073

Completeness, directly

The formalism of labelled sequent calculi allows the development of a direct proof of
completeness of logical systems w.r.t. relational frames (Negri 2014).

In particular, proof-construction algorithms provide all the information needed for extracting a
countermodel from a failed proof-search in a (labelled) sequent calculus (Troelstra and
Schwichtenberg 2000).

G3KGL

Init
x : p, Γ ⇒ ∆, x : p

L⊥
x : ⊥, Γ ⇒ ∆

x : A, x : B, Γ ⇒ ∆
L∧

x : A ∧ B, Γ ⇒ ∆
Γ ⇒ ∆, x : A Γ ⇒ ∆, x : B

R∧
Γ ⇒ ∆, x : A ∧ B

x : A, Γ ⇒ ∆ x : B, Γ ⇒ ∆
L∨

x : A ∨ B, Γ ⇒ ∆
Γ ⇒ ∆, x : A, x : B

R∨
Γ ⇒ ∆, x : A ∨ B

Γ ⇒ ∆, x : A
L¬

x : ¬A, Γ ⇒ ∆
x : A, Γ ⇒ ∆

R¬
Γ ⇒ ∆, x : ¬A

Γ ⇒ ∆, x : A x : B, Γ ⇒ ∆
L→

x : A → B, Γ ⇒ ∆
x : A, Γ ⇒ ∆, x : B

R→
Γ ⇒ ∆, x : A → B

y : A, xRy, x : 2A, Γ ⇒ ∆
L2

xRy, x : 2A, Γ ⇒ ∆
xRy, y : 2A, Γ ⇒ ∆, y : A

R2Löb
(y!)Γ ⇒ ∆, x : 2A

Irref
xRx, Γ ⇒ ∆

xRz, xRy, yRz, Γ ⇒ ∆
T rans

xRy, yRz, Γ ⇒ ∆

Correspondences

Forcing
Semantic notation x ⊩ A
Labelled sequent calculus notation x : A
HOL Light notation holds (W,R) V A x

How to employ these correspondences in our setting?

Shallow embedding

We adapt the goal stack mechanism of HOL Light to automate the proof development in
G3KGL via new HOL Light tactics: when the very goal stack is dealing with
▶ forcing statement as goal
⇝ tactics mimicking R-rules;

▶ forcing statemant as hypothesis
⇝ tactics mimicking L-rules.

Decision algorithm

To check whether a formula A is a theorem of GL, we programmed the tactic GL_TAC to
perform a complete proof-search in G3KGL embedded in HOL Light.
From that tactic, we define the expected GL_RULE automating the whole process: given the
formula A, the rule returns:

◦ a new theorem in HOL Light, stating that A is derivable in GL, whenever the proof-search
positively terminates;

◦ a countermodel to A, that is extracted from the top-most sequent built during the
automated proof-search.

https://archive.softwareheritage.org/swh:1:cnt:4af3d48af0f8b3c2dcef2680c9814f57c342ae2a;origin=https://github.com/jrh13/hol-light;visit=swh:1:snp:fe1b3b83e1dd2bde44d3698f723b25c949de2851;anchor=swh:1:rev:ab57c07ff0105fef75a9fcdd179eda0d26854ba3;path=/GL/decid.ml;lines=270-277

Short Demo

Put in perspective

• Formalising meta-theoretical results about non-classical logics provides a basis for
implementing within the theorem prover at hand an automated theorem prover/decision
procedure for the logic under investigation

• Internalisation methods through labelling are a formalisation in disguise: such a
correspondence is made precise by using a proof assistant

• The prototype for GL can be extended and refined; in particular, we would like to return a
complete tree of labelled sequents whenever the automated proof-search positively
terminates

• We have worked so far with labelled sequent calculi involving world labels, but if the
structure of a label is defined by rules (SOS?) we can extend the embedding by extending
the very sequent calculus

• Extending the theory would provide an alternative tool for formal verification of processes
which differs from both model checking (no black boxes) and main-stream automated
theorem provers implemented in Prolog

Many thanks for listening!

Put in perspective

• Formalising meta-theoretical results about non-classical logics provides a basis for
implementing within the theorem prover at hand an automated theorem prover/decision
procedure for the logic under investigation

• Internalisation methods through labelling are a formalisation in disguise: such a
correspondence is made precise by using a proof assistant

• The prototype for GL can be extended and refined; in particular, we would like to return a
complete tree of labelled sequents whenever the automated proof-search positively
terminates

• We have worked so far with labelled sequent calculi involving world labels, but if the
structure of a label is defined by rules (SOS?) we can extend the embedding by extending
the very sequent calculus

• Extending the theory would provide an alternative tool for formal verification of processes
which differs from both model checking (no black boxes) and main-stream automated
theorem provers implemented in Prolog

Many thanks for listening!

References

� Boolos, G. (1995). The logic of provability. Cambridge University Press.
� Harrison, J. (2017). The HOL Light Tutorial.
� Maggesi, M., PB, C. (2023). Mechanising Gödel-Löb provability logic in HOL Light,

J. Autom. Reasoning 67, 29.
� Negri, S. (2014). Proofs and countermodels in non-classical logics. Logica Universalis, 8,

25-60.
� Troelstra, A. S., Schwichtenberg, H. (2000). Basic proof theory (No. 43). Cambridge

University Press.

	Introduction
	Formalization
	Syntax and semantics
	Modal adequacy
	Internal theorem prover

	Demo

