
Analysing Collective Adaptive Systems
by Proving Theorems

Cosimo Perini Brogi° Marco Maggesi*

°IMT School for Advanced Studies Lucca
*University of Florence

REoCAS Colloquium @ ISoLA, celebrating Rocco De Nicola’s 70th Birthday
Crete, 26-31 October 2024

Work supported by the project SERICS - PE0000014, financed within PNRR, M4C2 I.1.3, funded by the European Union - NextGenerationEU

What are CASs?

➢ Systems composed of interacting
agents that collectively adapt and
evolve based on local interactions.

Several different approaches
✔ Statistical Physics: Apply solid mathematical theories and techniques to

model system evolution.
✔ Non-Classical Logics: Use temporal and modal logics for expressing

and verifying system properties.
✔ Action-based Formalisms: Focus on capturing the dynamics of

individual agents.
✔ Machine Learning Algorithms: Predict and model collective behaviour

on the basis of probabilistic dynamics.
✔ Various Programming Paradigms: Abstract from individual properties

at different levels, with more or less rigorous semantics.
✔ …
✔ Rocco’s way: Use process algebras, where each agent is a process

running in parallel and indirectly interacting with each other
component of the system

Searching for a unified
framework

Mathematical Models:

Robust, large-scale view of
CASs as autonomous
systems, focused on the
whole ensemble

Formal Descriptions for
Programming:

Local properties and interactions
among agents are explored via
multi-agent system tools for
simulation and verification

Our proposal

Use proof assistants to model, simulate, and logically verify the
behaviour of CASs within a single formal framework.

Some benefits of the proposed
methodology

✔ Highest level of precision in specifications
✔ Rigorous formalisation and simulation
✔ Emergent system behaviours are formally proven to manifest out of

the agents’ logic/dynamics as mathematical theorems

Challenging some inclinations
The big red button

Good looking code is not always the
best solution: programmers are not
gods, technology is not faith

Learn from experience:
✗ Error in floating-point division

instructions on some Pentium
processors

➔ $475m to cover the costs.

✗ Software bug in the Ariane 5's Inertial
Reference System (64-bit floating
variable into a 16-bit integer)

➔ $370m wasted in launch, huge project
delay, bad reputation

Challenging some inclinations
The model of models

“All models are wrong.
Some are wronger”

Challenging some inclinations
Down with formalisms

You are shown a set of four cards
placed on a table, each of which has
a number on one side and a colour
on the other. The visible faces of the
cards show “3”, “8”, “blue” and “red”.
Which card(s) must you turn over in
order to test that if a card shows an
even number on one face, then its
opposite face is blue?

You are shown a set of four cards
placed on a table, each of which has
an age on one side and a drink on
the other. The visible faces of the
cards show "drinking alcohol",
"drinking soda", "16 years old", and
"25 years old". Which card(s) must
you turn over to test the rule that if
someone is drinking alcohol, then
they must be 18 or older?

Why proof assistantsDefinition
A piece of software for developing mathematical proofs about
mathematical structures, programs and their formal specifications,
and checking the correctness of these proofs using the computer.

__

➢ Trusting a theorem or a piece of code means now trusting the formal
mathematical theory underlying the proof assistant one uses to write
statements, proofs, programs, and specifications.

➢ The implementation of that theory can itself be machine checked

➢ Each step of your modelling, reasoning, and analysis is certified to be
correct by construction

➔ For CASs, we unify modelling and verification, with no explicit need for
separate simulation programs

Type theoretic formalisation
A type-theoretic definition of non-deterministic agents in CASs:

 Agents are defined by a tuple
of attributes of specific types

 Their behaviour/logic is a
computable function of the PA
mapping attributes values into
attributes values

Type theoretic formalisation
A type-theoretic definition of the system

 A system is a tuple of agents and
environmental information

 The system dynamics is a
computable function defined in
terms of the logic of agents,
mapping a system configuration
into a set of possible next
configurations

Simulation using proof assistants
• The process algebraic approach needs highly ingenious techniques to

translate formal specifications of a CAS into C programs, so that
emergence of the collective property is simulated as a reachability
statement of the programs corresponding to the specifications

• After formalising the model and the dynamics in a type-based PA, we
can perform within the PA a direct simulation of the system dynamics
as the latter is defined as a functional program evaluated by the
machine

Pros: No external translation is needed, correctness of the output is
guaranteed by a certified computation on any mid-level computer
Cons: Naive computations are not efficient,
implementation/compilation of the functional program can be time
consuming

Verification using proof assistants

Model checking is known to struggle with large systems in many
situations, and CASs make no exceptions.

✔ A proof assistant can state in type-theoretic language the system
property we need to verify and formally prove that the property holds
as a mathematical theorem

✔ It is not unusual that, during the interactive proof of the property, the
user identifies potential counterexamples and rare events in the
system dynamics, leading to an improved formalisation and design

Pros: The emergent behaviour is proven to manifest in systems of
arbitrary size, model-checking escaping properties are easily captured
by type theory,
Cons: Limited automation, very active participation required from the
human user

Finding the right path
➢ Proof assistants offer a unique opportunity for developing a unified

and rigorous framework for CAS analysis (modelling, simulation,
verification)
✔ We already have promising results demonstrating PAs’ ability to

simulate dynamics and verify emergent properties of a simple
colony of foraging ants¹

➢ They address the limitations of traditional formal methods for large
systems, by handling, proving and refuting statements over arbitrary
system sizes
 Current efficiency of functional simulation slightly lags behind

traditional tools (SAT/SMT solvers)

➢ An integration of logical verification based on proof assistants with
state-of-the-art automated reasoning tools (e.g. Lean+Z3) opens new
horizons for studying collective adaptive systems

1. Maggesi, M., Perini Brogi, C.: Rigorous analysis of idealised pathfinding ants in higher-order logic, ISoLA 2024 (talk from two days ago)

Proof is an idol before whom the
pure mathematician tortures himself.

– Arthur Eddington

Thanks for your attention!Thanks for your attention!

	Pagina 1
	Pagina 2
	Pagina 3
	Pagina 4
	Pagina 5
	Pagina 6
	Pagina 7
	Pagina 8
	Pagina 9
	Pagina 10
	Pagina 11
	Pagina 12
	Pagina 13
	Pagina 14
	Pagina 15
	Pagina 16

