
A formal proof of modal completeness for provability logic

Cosimo Perini Brogi ∗ Marco Maggesi †

∗University of Genoa

†University of Florence

ITP 2021, Rome & The Internet
29 June – 01 July, 2021

Modal Logics: a large class

Non-normal Normal

Ability Alethic
Conditional Temporal
Belief revision Dynamic
Probability Epistemic
Deontic Many Valued
Social Choice Theory FDE
... Provability

...

Proof theory, foundations of mathematics, ordinal analysis,. . .

Modal Logics: a large class

Non-normal Normal

Ability Alethic
Conditional Temporal
Belief revision Dynamic
Probability Epistemic
Deontic Many Valued
Social Choice Theory FDE
... Provability

...

Proof theory, foundations of mathematics, ordinal analysis,. . .

Gödel-Löb Logic

We consider a propositional modal language L2 whose formulas have one of the
following forms:

p | > | ⊥ | ¬A | A ∧B | A ∨B | A→ B | A↔ B | 2A.

GL denotes the axiomatic calculus made of:
I Axioms of CPC
I Axiom K : 2(A→ B)→ 2A→ 2B

I Axiom GL : 2(2A→ A)→ 2A

I MP Rule A→ B A
B

I Nec Rule A
2A

Gödel-Löb Logic

We consider a propositional modal language L2 whose formulas have one of the
following forms:

p | > | ⊥ | ¬A | A ∧B | A ∨B | A→ B | A↔ B | 2A.

GL denotes the axiomatic calculus made of:
I Axioms of CPC
I Axiom K : 2(A→ B)→ 2A→ 2B

I Axiom GL : 2(2A→ A)→ 2A

I MP Rule A→ B A
B

I Nec Rule A
2A

Arithmetical Realization

Let T be a theory of arithmetic such that IΣ1 ⊆ T.
A function ∗ : FormL2

→ SentLT is a realization if (2A)∗ := ProvTpA∗q and it distributes
over classical operators.

Soundness
For any A ∈ FormL2

, if GL ` A then T ` A∗ for any realization ∗.

Formalized Second Incompleteness Theorem
T ` ¬ProvTp⊥q→ ¬ProvTp¬ProvTp⊥qq.

Henkin-Löb Theorem
For any T as before,

T ` A iff T ` ProvTpAq→ A.

Solovay Theorem

Completeness (Solovay 1976)
For any A ∈ FormL2

, if IΣ1 ⊆ T and GL 6` A, then T 6` A∗ for some realization ∗.

The only way to prove this result is by encoding in T a relational countermodel for A and
“extract” from it a ∗ that does the job.

Modal Adequacy

GL ` A iff TFT � A

where TFT is the class of relational structures 〈W, R, v〉 where W is finite, R ⊆W ×W is
transitive and 〈W, R〉 defines a tree.

Corollary (Decidability)
GL is an effectively decidable system.

Solovay Theorem

Completeness (Solovay 1976)
For any A ∈ FormL2

, if IΣ1 ⊆ T and GL 6` A, then T 6` A∗ for some realization ∗.

The only way to prove this result is by encoding in T a relational countermodel for A and
“extract” from it a ∗ that does the job.

Modal Adequacy

GL ` A iff TFT � A

where TFT is the class of relational structures 〈W, R, v〉 where W is finite, R ⊆W ×W is
transitive and 〈W, R〉 defines a tree.

Corollary (Decidability)
GL is an effectively decidable system.

Brief glance at HOL Light

◦ Clean logical foundations ≈ Principia Mathematica

◦ LCF-style proof checker based on polymorphic simple
type theory ≈ small class of primitive inference rules
for creating theorems + derived inference rules to be
programmed on top
⇒ 10 primitive rules
⇒ 2 conservative extension principles
⇒ Axioms of choice, extensionality, and infinity

◦ Written as an OCaml program ≈ three datatypes for
the logic: hol_type, term, and thm

◦ Goal-directed proof development ≈ tactic(al)s +
automated methods (in the appropriate domains)

Despite its simple foundations, HOL Light includes a large library of mathematical results in
topology, analysis, Euclidean geometry, QBF, arithmetic, FOL, and Incompleteness
theorem!

Brief glance at HOL Light

◦ Clean logical foundations ≈ Principia Mathematica

◦ LCF-style proof checker based on polymorphic simple
type theory ≈ small class of primitive inference rules
for creating theorems + derived inference rules to be
programmed on top
⇒ 10 primitive rules
⇒ 2 conservative extension principles
⇒ Axioms of choice, extensionality, and infinity

◦ Written as an OCaml program ≈ three datatypes for
the logic: hol_type, term, and thm

◦ Goal-directed proof development ≈ tactic(al)s +
automated methods (in the appropriate domains)

Despite its simple foundations, HOL Light includes a large library of mathematical results in
topology, analysis, Euclidean geometry, QBF, arithmetic, FOL, and Incompleteness
theorem!

Brief glance at HOL Light

◦ Clean logical foundations ≈ Principia Mathematica

◦ LCF-style proof checker based on polymorphic simple
type theory ≈ small class of primitive inference rules
for creating theorems + derived inference rules to be
programmed on top
⇒ 10 primitive rules
⇒ 2 conservative extension principles
⇒ Axioms of choice, extensionality, and infinity

◦ Written as an OCaml program ≈ three datatypes for
the logic: hol_type, term, and thm

◦ Goal-directed proof development ≈ tactic(al)s +
automated methods (in the appropriate domains)

Despite its simple foundations, HOL Light includes a large library of mathematical results in
topology, analysis, Euclidean geometry, QBF, arithmetic, FOL, and Incompleteness
theorem!

Brief glance at HOL Light

◦ Clean logical foundations ≈ Principia Mathematica

◦ LCF-style proof checker based on polymorphic simple
type theory ≈ small class of primitive inference rules
for creating theorems + derived inference rules to be
programmed on top
⇒ 10 primitive rules
⇒ 2 conservative extension principles
⇒ Axioms of choice, extensionality, and infinity

◦ Written as an OCaml program ≈ three datatypes for
the logic: hol_type, term, and thm

◦ Goal-directed proof development ≈ tactic(al)s +
automated methods (in the appropriate domains)

Despite its simple foundations, HOL Light includes a large library of mathematical results in
topology, analysis, Euclidean geometry, QBF, arithmetic, FOL, and Incompleteness
theorem!

Brief glance at HOL Light

◦ Clean logical foundations ≈ Principia Mathematica

◦ LCF-style proof checker based on polymorphic simple
type theory ≈ small class of primitive inference rules
for creating theorems + derived inference rules to be
programmed on top
⇒ 10 primitive rules
⇒ 2 conservative extension principles
⇒ Axioms of choice, extensionality, and infinity

◦ Written as an OCaml program ≈ three datatypes for
the logic: hol_type, term, and thm

◦ Goal-directed proof development ≈ tactic(al)s +
automated methods (in the appropriate domains)

Despite its simple foundations, HOL Light includes a large library of mathematical results in
topology, analysis, Euclidean geometry, QBF, arithmetic, FOL, and Incompleteness
theorem!

Syntax and relational semantics
A starting point

I We start with the inductive definition of our mono-modal propositional language,
and with its interpretation w.r.t. standard relational structures;

I We identify the classes of structures we are interested in: transitive Noetherian
frames, and more interestingly irreflexive transitive finite (ITF) frames.

N.B. The initial part of the formalization has been adapted from an embedding of the
syntax and semantics of GL described in The HOL Light Tutorial. By now on, we
develop the formalization towards different directions :

Give a formal study of the notions of theoremhood and modal tautology for GL, i.e. an
adequacy theorem relating syntax and semantics for this specific logic.

Syntax and relational semantics
A starting point

I We start with the inductive definition of our mono-modal propositional language,
and with its interpretation w.r.t. standard relational structures;

I We identify the classes of structures we are interested in: transitive Noetherian
frames, and more interestingly irreflexive transitive finite (ITF) frames.

N.B. The initial part of the formalization has been adapted from an embedding of the
syntax and semantics of GL described in The HOL Light Tutorial. By now on, we
develop the formalization towards different directions :

Give a formal study of the notions of theoremhood and modal tautology for GL, i.e. an
adequacy theorem relating syntax and semantics for this specific logic.

Our code

Our repository is publicly available from GitHub, and it is part of the official HOL
Light distribution

https://github.com/jrh13/hol-light/, directory GL.

In the following, we briefly survey that code, partially relying on HOL Light syntax and
vernacular.

https://github.com/jrh13/hol-light/
https://github.com/jrh13/hol-light/tree/master/GL

Partial glossary

Informal notation HOL notation GL notation Description
⊥ F False Falsity
> T True Truth
¬p ~ p Not p Negation
p ∧ q /\ && Conjunction
p ∨ q \/ || Disjunction
p =⇒ q ==> --> Implication
p⇐⇒ q <=> <-> Biconditional

2p Box p Modal Operator
p1, . . . pN ` p p1 ... pN |- p HOL theorem

` p |-- p Derivability in GL
L � p L |= p Validity in a class of frames L
∀x. P (x) !x. P(x) Universal quantification
∃x. P (x) ?x. P(x) Existential quantification
λx.M(x) \x. M(x) Lambda abstraction
x ∈ s x IN s Set membership

Axiomatic Calculus

GL
I Axioms of CPC
I Axiom K : 2(A→ B)→ 2A→ 2B

I Axiom GL : 2(2A→ A)→ 2A

I MP Rule A→ B A
B

I Nec Rule A
2A

Axiomatic Calculus, formalized
In HOL Light, we formalize that as

let GLaxiom_RULES,GLaxiom_INDUCT,GLaxiom_CASES = new_inductive_definition
‘(!p q. GLaxiom (p --> (q --> p))) /\
(!p q r. GLaxiom ((p --> q --> r) --> (p --> q) --> (p --> r))) /\
(!p. GLaxiom (((p --> False) --> False) --> p)) /\
(!p q. GLaxiom ((p <-> q) --> p --> q)) /\
(!p q. GLaxiom ((p <-> q) --> q --> p)) /\
(!p q. GLaxiom ((p --> q) --> (q --> p) --> (p <-> q))) /\
GLaxiom (True <-> False --> False) /\
(!p. GLaxiom (Not p <-> p --> False)) /\
(!p q. GLaxiom (p && q <-> (p --> q --> False) --> False)) /\
(!p q. GLaxiom (p || q <-> Not(Not p && Not q))) /\
(!p q. GLaxiom (Box (p --> q) --> Box p --> Box q)) /\
(!p. GLaxiom (Box (Box p --> p) --> Box p))‘;;

together with a derivability relation |−−, operating on the previous axiom schemas by
means of modus ponens and necessitation:
let GLproves_RULES,GLproves_INDUCT,GLproves_CASES =

new_inductive_definition
‘(!p. GLaxiom p ==> |-- p) /\

(!p q. |-- (p --> q) /\ |-- p ==> |-- q) /\
(!p. |-- p ==> |-- (Box p))‘;;

Modal Soundness
By applying induction on |−−, it is not hard to prove that the calculus is sound
w.r.t. our classes of frames:

Modal Soundness
let GL_TRANSNT_VALID = prove
(‘!p. (|-- p) ==> TRANSNT:(W->bool)#(W->W->bool)->bool |= p‘,
MATCH_MP_TAC GLproves_INDUCT THEN REWRITE_TAC[GLAXIOMS_TRANSNT_VALID]
THEN MODAL_TAC);;

let GL_ITF_VALID = prove
(‘!p. |-- p ==> ITF:(W->bool)#(W->W->bool)->bool |= p‘,
GEN_TAC THEN STRIP_TAC THEN
SUBGOAL_THEN ‘TRANSNT:(W->bool)#(W->W->bool)->bool |= p‘ MP_TAC THENL
[ASM_SIMP_TAC[GL_TRANSNT_VALID];
REWRITE_TAC[valid; FORALL_PAIR_THM] THEN MESON_TAC[ITF_NT]]);;

Corollary (Consistency)
let GL_consistent = prove
(‘~ |-- False‘,
REFUTE_THEN (MP_TAC o MATCH_MP (INST_TYPE [‘:num‘,‘:W‘] GL_ITF_VALID))
THEN REWRITE_TAC[valid; holds; holds_in; FORALL_PAIR_THM;

ITF; NOT_FORALL_THM] THEN
MAP_EVERY EXISTS_TAC [‘{0}‘; ‘\x:num y:num. F‘] THEN
REWRITE_TAC[NOT_INSERT_EMPTY; FINITE_SING; IN_SING] THEN MESON_TAC[]);;

Modal Soundness
By applying induction on |−−, it is not hard to prove that the calculus is sound
w.r.t. our classes of frames:

Modal Soundness
let GL_TRANSNT_VALID = prove
(‘!p. (|-- p) ==> TRANSNT:(W->bool)#(W->W->bool)->bool |= p‘,
MATCH_MP_TAC GLproves_INDUCT THEN REWRITE_TAC[GLAXIOMS_TRANSNT_VALID]
THEN MODAL_TAC);;

let GL_ITF_VALID = prove
(‘!p. |-- p ==> ITF:(W->bool)#(W->W->bool)->bool |= p‘,
GEN_TAC THEN STRIP_TAC THEN
SUBGOAL_THEN ‘TRANSNT:(W->bool)#(W->W->bool)->bool |= p‘ MP_TAC THENL
[ASM_SIMP_TAC[GL_TRANSNT_VALID];
REWRITE_TAC[valid; FORALL_PAIR_THM] THEN MESON_TAC[ITF_NT]]);;

Corollary (Consistency)
let GL_consistent = prove
(‘~ |-- False‘,
REFUTE_THEN (MP_TAC o MATCH_MP (INST_TYPE [‘:num‘,‘:W‘] GL_ITF_VALID))
THEN REWRITE_TAC[valid; holds; holds_in; FORALL_PAIR_THM;

ITF; NOT_FORALL_THM] THEN
MAP_EVERY EXISTS_TAC [‘{0}‘; ‘\x:num y:num. F‘] THEN
REWRITE_TAC[NOT_INSERT_EMPTY; FINITE_SING; IN_SING] THEN MESON_TAC[]);;

Modal Completeness

Our main goal has been proving in HOL Light the converse direction, namely

If GL 6` A then ITF 6� A

For many modal systems, it is common to use Henkin’s “canonical model
construction”, where countermodels are made of maximal consistent sets of formulae
and an appropriate accessibility relation.

These countermodels can then be filtrated, so that decidability of the system is
obtained via the finite model property.

Notice, however, that for each modal system, a specific filtration is required.

Modal Completeness, formalized

The canonical model for GL per se does not belong to ITF, and some further
constructions are necessary to derive a structure that does the job.

Boolos’s textbook on provability logics shows that it is still possible to apply that style
of reasoning to GL, avoiding some problematic steps of Henkin’s method.

By working with HOL Light, we show that, in fact, we can stick to the original idea by
Henkin without invalidating the formalization, since all we need is
I Proving several formal lemmas in GL to reason about finite (maximal) consistent

sets of formulae;
I Formalizing the key construction (EXTEND_MAXIMAL_CONSISTENT) by using lists

(or finite sets) of formulae;
I Relying on the higher-order reasoning implemented in the system.

Modal Completeness, formalized

The canonical model for GL per se does not belong to ITF, and some further
constructions are necessary to derive a structure that does the job.

Boolos’s textbook on provability logics shows that it is still possible to apply that style
of reasoning to GL, avoiding some problematic steps of Henkin’s method.

By working with HOL Light, we show that, in fact, we can stick to the original idea by
Henkin without invalidating the formalization, since all we need is
I Proving several formal lemmas in GL to reason about finite (maximal) consistent

sets of formulae;
I Formalizing the key construction (EXTEND_MAXIMAL_CONSISTENT) by using lists

(or finite sets) of formulae;
I Relying on the higher-order reasoning implemented in the system.

Modal Completeness, formalized

The canonical model for GL per se does not belong to ITF, and some further
constructions are necessary to derive a structure that does the job.

Boolos’s textbook on provability logics shows that it is still possible to apply that style
of reasoning to GL, avoiding some problematic steps of Henkin’s method.

By working with HOL Light, we show that, in fact, we can stick to the original idea by
Henkin without invalidating the formalization, since all we need is
I Proving several formal lemmas in GL to reason about finite (maximal) consistent

sets of formulae;
I Formalizing the key construction (EXTEND_MAXIMAL_CONSISTENT) by using lists

(or finite sets) of formulae;
I Relying on the higher-order reasoning implemented in the system.

Modal Completeness, formalized

Completeness statement and explicit countermodel

COMPLETENESS_THEOREM
|- !p. ITF:(form list->bool)#(form list->form list->bool)->bool |= p

==> |-- p

GL_COUNTERMODEL
|- !M p.

~(|-- p) /\
MAXIMAL_CONSISTENT p M /\ MEM (Not p) M /\
(!q. MEM q M ==> q SUBSENTENCE p)
==>
~holds

({M | MAXIMAL_CONSISTENT p M /\ (!q. MEM q M ==> q SUBSENTENCE p)},
GL_STANDARD_REL p)

(\a w. Atom a SUBFORMULA p /\ MEM (Atom a) w)
p M‘

A better result, via bisimulation

Bisimulation
let BISIMIMULATION = new_definition

‘BISIMIMULATION (W1,R1,V1) (W2,R2,V2) Z <=>
(!w1:A w2:B. Z w1 w2 ==> w1 IN W1 /\ w2 IN W2 /\

(!a:string. V1 a w1 <=> V2 a w2) /\
(!w1’. R1 w1 w1’ ==> ?w2’. w2’ IN W2 /\ Z w1’ w2’ /\ R2 w2 w2’) /\
(!w2’. R2 w2 w2’ ==> ?w1’. w1’ IN W1 /\ Z w1’ w2’ /\ R1 w1 w1’))‘;;

Bisimulation Invariance Lemma
BISIMULATION_HOLDS
|- !W1 R1 V1 W2 R2 V2 Z p w1:A w2:B.

BISIMIMULATION (W1,R1,V1) (W2,R2,V2) Z /\ Z w1 w2
==> (holds (W1,R1) V1 p w1 <=> holds (W2,R2) V2 p w2)

A better result, via bisimulation

Bisimulation
let BISIMIMULATION = new_definition

‘BISIMIMULATION (W1,R1,V1) (W2,R2,V2) Z <=>
(!w1:A w2:B. Z w1 w2 ==> w1 IN W1 /\ w2 IN W2 /\

(!a:string. V1 a w1 <=> V2 a w2) /\
(!w1’. R1 w1 w1’ ==> ?w2’. w2’ IN W2 /\ Z w1’ w2’ /\ R2 w2 w2’) /\
(!w2’. R2 w2 w2’ ==> ?w1’. w1’ IN W1 /\ Z w1’ w2’ /\ R1 w1 w1’))‘;;

Bisimulation Invariance Lemma
BISIMULATION_HOLDS
|- !W1 R1 V1 W2 R2 V2 Z p w1:A w2:B.

BISIMIMULATION (W1,R1,V1) (W2,R2,V2) Z /\ Z w1 w2
==> (holds (W1,R1) V1 p w1 <=> holds (W2,R2) V2 p w2)

A better result, via bisimulation

We prove that the relation
\w1 w2. MAXIMAL_CONSISTENT p w1 /\ (!q. MEM q w1 ==> q SUBSENTENCE p) /\

w2 IN GL_STDWORLDS p /\
set_of_list w1 = w2

defines a bisimulation between the ITF-standard model based on maximal consistent
lists of formulae and the model based on corresponding sets of formulae.

Finally, by the invariance principle stated by BISIMULATION_HOLDS, we have the
desired version of modal completeness

Modal Completeness
COMPLETENESS_THEOREM_FINITE_SETS
|- !p.

ITF:((form->bool)->bool)#((form->bool)->(form->bool)->bool)->bool |= p
==> |-- p

A better result, via bisimulation

We prove that the relation
\w1 w2. MAXIMAL_CONSISTENT p w1 /\ (!q. MEM q w1 ==> q SUBSENTENCE p) /\

w2 IN GL_STDWORLDS p /\
set_of_list w1 = w2

defines a bisimulation between the ITF-standard model based on maximal consistent
lists of formulae and the model based on corresponding sets of formulae.

Finally, by the invariance principle stated by BISIMULATION_HOLDS, we have the
desired version of modal completeness

Modal Completeness
COMPLETENESS_THEOREM_FINITE_SETS
|- !p.

ITF:((form->bool)->bool)#((form->bool)->(form->bool)->bool)->bool |= p
==> |-- p

Application: Proving “formal” lemmas

I In natural deduction:

[A]
→−intro

A→ A
I In an axiomatic system:

1. (A→ ((A→ A)→ A))→ ((A→ (A→ A))→ (A→ A)) Frege
2. A→ ((A→ A)→ A) a fortiori
3. (A→ (A→ A))→ (A→ A) MP : 1, 2
4. A→ (A→ A) a fortiori
5. A→ A MP : 3, 4

I Does HOL Light automation help?

Application: Proving “formal” lemmas

I In natural deduction:

[A]
→−intro

A→ A
I In an axiomatic system:

1. (A→ ((A→ A)→ A))→ ((A→ (A→ A))→ (A→ A)) Frege
2. A→ ((A→ A)→ A) a fortiori
3. (A→ (A→ A))→ (A→ A) MP : 1, 2
4. A→ (A→ A) a fortiori
5. A→ A MP : 3, 4

I Does HOL Light automation help?

Application: Proving “formal” lemmas

I In natural deduction:

[A]
→−intro

A→ A
I In an axiomatic system:

1. (A→ ((A→ A)→ A))→ ((A→ (A→ A))→ (A→ A)) Frege
2. A→ ((A→ A)→ A) a fortiori
3. (A→ (A→ A))→ (A→ A) MP : 1, 2
4. A→ (A→ A) a fortiori
5. A→ A MP : 3, 4

I Does HOL Light automation help?

Proving GL-lemmas, formally

Identity law
let GL_imp_refl_th = prove
(‘!p. |-- (p --> p)‘,
MESON_TAC[GL_modusponens; GL_axiom_distribimp; GL_axiom_addimp]);;

2 over ↔
let GL_box_iff_th = prove
(‘!p q. |-- (Box (p <-> q) --> (Box p <-> Box q))‘,
REPEAT GEN_TAC THEN MATCH_MP_TAC GL_imp_trans THEN
EXISTS_TAC ‘(Box p --> Box q) && (Box q --> Box p)‘ THEN CONJ_TAC THENL
[ALL_TAC; MATCH_MP_TAC GL_iff_imp2 THEN MATCH_ACCEPT_TAC GL_iff_def_th]
THEN MATCH_MP_TAC GL_and_intro THEN CONJ_TAC THENL
[MATCH_MP_TAC GL_imp_trans THEN EXISTS_TAC ‘Box (p --> q)‘ THEN
REWRITE_TAC[GL_axiom_boximp] THEN MATCH_MP_TAC GL_imp_box THEN
MATCH_ACCEPT_TAC GL_axiom_iffimp1;
MATCH_MP_TAC GL_imp_trans THEN EXISTS_TAC ‘Box (q --> p)‘ THEN
REWRITE_TAC[GL_axiom_boximp] THEN MATCH_MP_TAC GL_imp_box THEN
MATCH_ACCEPT_TAC GL_axiom_iffimp2]);;

Leaving proof-search to HOL Light toolbox doesn’t seem promising. . .

Proving GL-lemmas, formally

Identity law
let GL_imp_refl_th = prove
(‘!p. |-- (p --> p)‘,
MESON_TAC[GL_modusponens; GL_axiom_distribimp; GL_axiom_addimp]);;

2 over ↔
let GL_box_iff_th = prove
(‘!p q. |-- (Box (p <-> q) --> (Box p <-> Box q))‘,
REPEAT GEN_TAC THEN MATCH_MP_TAC GL_imp_trans THEN
EXISTS_TAC ‘(Box p --> Box q) && (Box q --> Box p)‘ THEN CONJ_TAC THENL
[ALL_TAC; MATCH_MP_TAC GL_iff_imp2 THEN MATCH_ACCEPT_TAC GL_iff_def_th]
THEN MATCH_MP_TAC GL_and_intro THEN CONJ_TAC THENL
[MATCH_MP_TAC GL_imp_trans THEN EXISTS_TAC ‘Box (p --> q)‘ THEN
REWRITE_TAC[GL_axiom_boximp] THEN MATCH_MP_TAC GL_imp_box THEN
MATCH_ACCEPT_TAC GL_axiom_iffimp1;
MATCH_MP_TAC GL_imp_trans THEN EXISTS_TAC ‘Box (q --> p)‘ THEN
REWRITE_TAC[GL_axiom_boximp] THEN MATCH_MP_TAC GL_imp_box THEN
MATCH_ACCEPT_TAC GL_axiom_iffimp2]);;

Leaving proof-search to HOL Light toolbox doesn’t seem promising. . .

Proving GL-lemmas, cleverly

Having COMPLETENESS_THEOREM_FINITE_SETS we can approach the task by:
1. Applying the theorem;
2. Unfolding some definitions;
3. Trying to solve the resulting semantic problem by using automated first-order

reasoning.

A tactic (and a rule) for GL-derivability
let GL_TAC : tactic =

MATCH_MP_TAC COMPLETENESS_THEOREM_NUM THEN
REWRITE_TAC[valid; FORALL_PAIR_THM; holds_in; holds;

ITF; GSYM MEMBER_NOT_EMPTY] THEN
MESON_TAC[];;

let GL_RULE tm = prove(tm, REPEAT GEN_TAC THEN GL_TAC);;

Proving GL-lemmas, cleverly

Having COMPLETENESS_THEOREM_FINITE_SETS we can approach the task by:
1. Applying the theorem;
2. Unfolding some definitions;
3. Trying to solve the resulting semantic problem by using automated first-order

reasoning.

A tactic (and a rule) for GL-derivability
let GL_TAC : tactic =

MATCH_MP_TAC COMPLETENESS_THEOREM_NUM THEN
REWRITE_TAC[valid; FORALL_PAIR_THM; holds_in; holds;

ITF; GSYM MEMBER_NOT_EMPTY] THEN
MESON_TAC[];;

let GL_RULE tm = prove(tm, REPEAT GEN_TAC THEN GL_TAC);;

Proving GL-lemmas, cleverly
Almost there!

2 over ↔, again
GL_RULE ‘!p q. |-- (Box (p <-> q) --> (Box p <-> Box q))‘;;

0..0..1..6..11..19..32..solved at 39
0..0..1..6..11..19..32..solved at 39

val it : thm = |- !p q. |-- (Box (p <-> q) --> (Box p <-> Box q))

In spite of this, the tactic needs to be improved:

GL_RULE ‘|-- (Box (Box False --> False) --> Box False)‘;;
0..0..0..4..8..12..20..28..61..105..150..228..314..425..565..707..887..
1123..1397..1733..2128..2574..3101..3804..4572..5435..6457..7611..8898..
10310..11841..13585..15681..17896..20343..23033..25840..29215..33310..
37964..43266..49063..55099..61633..68918..76664..84798..93855..104554..
117586..132638..Exception: Failure "solve_goal: Too deep".

Proving GL-lemmas, cleverly
Almost there!

2 over ↔, again
GL_RULE ‘!p q. |-- (Box (p <-> q) --> (Box p <-> Box q))‘;;

0..0..1..6..11..19..32..solved at 39
0..0..1..6..11..19..32..solved at 39

val it : thm = |- !p q. |-- (Box (p <-> q) --> (Box p <-> Box q))

In spite of this, the tactic needs to be improved:

GL_RULE ‘|-- (Box (Box False --> False) --> Box False)‘;;
0..0..0..4..8..12..20..28..61..105..150..228..314..425..565..707..887..
1123..1397..1733..2128..2574..3101..3804..4572..5435..6457..7611..8898..
10310..11841..13585..15681..17896..20343..23033..25840..29215..33310..
37964..43266..49063..55099..61633..68918..76664..84798..93855..104554..
117586..132638..Exception: Failure "solve_goal: Too deep".

Conclusions

Our repository shows that we can:
I Define the derivability relation w.r.t. the axiomatic system GL;
I Prove in HOL Light several lemmas (approx. 120) within GL;
I Formalize modal completeness in a very natural way, by relying on HOL Light

toolbox.
As by-products, we have obtained:
◦ A “kernel” for further experiments on reasoning within and about modal

axiomatic calculi by using HOL Light;
◦ An empirical analysis of “friendliness” and efficiency of the system w.r.t. proof
automation for axiomatic calculi;
◦ An application of the bisimulation lemma with an eye on complexity issues.

Future directions:
3 Integration with Arithmetic repository, and Solovay theorem?
3 Improvement of GL_TAC/decision procedure, and mechanization of proof-search?

Conclusions

Our repository shows that we can:
I Define the derivability relation w.r.t. the axiomatic system GL;
I Prove in HOL Light several lemmas (approx. 120) within GL;
I Formalize modal completeness in a very natural way, by relying on HOL Light

toolbox.
As by-products, we have obtained:
◦ A “kernel” for further experiments on reasoning within and about modal
axiomatic calculi by using HOL Light;
◦ An empirical analysis of “friendliness” and efficiency of the system w.r.t. proof
automation for axiomatic calculi;
◦ An application of the bisimulation lemma with an eye on complexity issues.

Future directions:
3 Integration with Arithmetic repository, and Solovay theorem?
3 Improvement of GL_TAC/decision procedure, and mechanization of proof-search?

Conclusions

Our repository shows that we can:
I Define the derivability relation w.r.t. the axiomatic system GL;
I Prove in HOL Light several lemmas (approx. 120) within GL;
I Formalize modal completeness in a very natural way, by relying on HOL Light

toolbox.
As by-products, we have obtained:
◦ A “kernel” for further experiments on reasoning within and about modal
axiomatic calculi by using HOL Light;
◦ An empirical analysis of “friendliness” and efficiency of the system w.r.t. proof
automation for axiomatic calculi;
◦ An application of the bisimulation lemma with an eye on complexity issues.

Future directions:
3 Integration with Arithmetic repository, and Solovay theorem?
3 Improvement of GL_TAC/decision procedure, and mechanization of proof-search?

Many thanks
for your attention!

	Introduction
	Formalization
	Code Overview
	An application

	Conclusions

