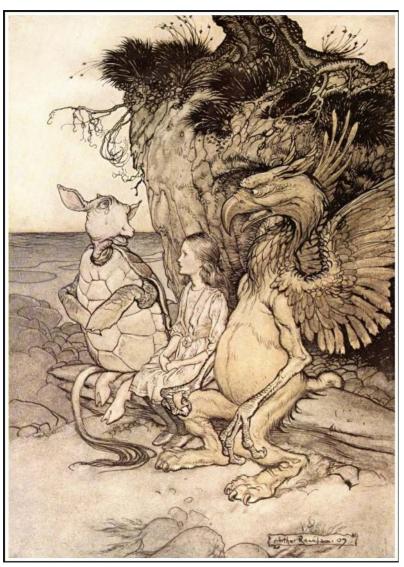

Piccolo Atlante delle Logiche Non-Classiche

- o Introduzione
- o Logica classica
- o Logica modale
- o Condizionali & Controfattuali
- o Logica temporale
- o Logiche & Paradossi
- o Per approfondire

Itinerario di oggi

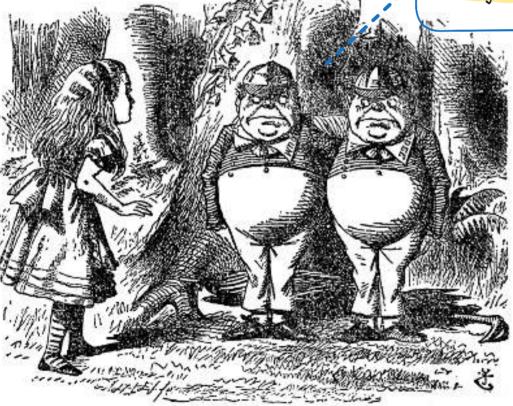



```
*54.42. F:: α ∈ 2. D:. B ⊂ α. ! B. B ≠ α. ≡ .B ∈ ι · α
       Dem.
-. *54.4. Dr:: x = L'XUL'V. D:.
                   \beta \subset \alpha. \exists ! \beta : \equiv : \beta = \wedge .v. \beta = \iota^{\delta} \times .v. \beta = \iota^{\delta} y. \gamma
[*24.53.56.*51.161] = :\beta = \iota^* \times . \vee . \beta = \alpha : \exists ! \beta
F. * 54.25. Transp. * 52.22. > F: X + y. O. L x UL y)
[*13.12] DF: \alpha = \iota' \times U \iota' y \cdot \times \pm y \cdot D \cdot \alpha \pm \iota' \times \cdot \alpha \pm \iota' y \cdot \alpha 
 F. (1). (2). > + :: \( = \ell^6 \times \text{U} \ell^6 y \times \pm y \times \times \text{Y.} \tag{7}:
                           \beta \subset \alpha . \exists ! \beta . \beta + \alpha . \equiv : \beta = \iota' x . v . \beta = \iota' y :
[451.2357
                                                          =: (3z)·zex./s=l'z:
[* 37.6]
                                                         ≡:β∈ι"∝
F. (3). * 11.11.35. * 54.101. ] +. Prop.
*54.43. F: \alpha, \beta \in 1. D: \alpha \cap \beta = \Lambda. \equiv \alpha \cup \beta \in 2
         Dem.
              F. *54.26. → F:. α = l'x.β=l'y. →: α Uβ ε2. = x +y.
             E51-2317
                                                            =.\iota'x \cap \iota'y = \lambda.
             [*13·12]
                                                          = . \propto \Lambda / S = 1 (1)
             F. (1). * 11.11.35. )
                    1: (3x,y). x=1'x. /3=1'y. ): xU/Se2.
                                                          \equiv . \propto \Lambda \beta = \Lambda (2)
              L. (2). * 11.54. * 52.1. ] t. Prop.
```

La logica

©R, Susanne Berner 1995

Che cos'è la logica?


Arthur Rackham, WikiMedia, Pubblico dominio

- Matematica
- Filosofia
- Informatica
- Linguistica
- Psicologia
- _

Che cos'è la logica!?

«[...] Se fosse così, lo sarebbe; e se era così, lo potrebbe essere; ma dato che non è così, allora non lo è.

È la logica!

John Tenniel, WikiMedia, Pubblico dominio

Una definizione (ed un esempio)

La logica studia quali ragioni valgano davvero per un qualcosa, e per quale motivo

«[...] Quando parli, dovresti dire ciò che intendi dire» soggiunse il Leprotto Marzolino.

«Certo» replicò prontamente Alice; «perlomeno – perlomeno io intendo dire proprio ciò che dico – che è poi la stessa cosa, no?» «No che non è la stessa cosa!» esclamò il Cappellaio. «A questa stregua, potresti sostenere che "Vedo ciò che mangio" sia la stessa cosa di "Mangio ciò che vedo"!»

Inferenze (il) logiche

1. Se mangio qualcosa, allora l'ho vista

2. Mangio la focaccia

Quindi: Ho visto la focaccia

1. Se mangio qualcosa, allora l'ho vista

2. Ho visto la focaccia Quindi: Mangio la focaccia

Inferenze logiche Modus ponens

- 1. Se mangio qualcosa, allora l'ho vista
- 2. Mangio la focaccia

Quindi: Ho visto la focaccia

- 1. Se ho visto qualcosa, allora la mangio
- 2. Ho visto la focaccia

Quindi: Mangio la focaccia

- 1. Se qualcosa è un fermione, allora ha spin semintero
- 2. Un quark è un fermione

Quindi: Un quark ha spin semintero

Uno splendido Modus Ponens

E poi se la gente sa – e la gente lo sa – che sai suonare, Suonare ti tocca per tutta la vita, e ti piace lasciarti ascoltare

Fabrizio De André, Il suonatore Jones, 1971

- 1. Se la gente sa che sai suonare, allora suonare ti tocca...
- 2. La gente sa che sai suonare

Quindi: Suonare ti tocca...

2. La gente sa che sai suonare Quindi: Suonare ti tocca...

Una disciplina formale

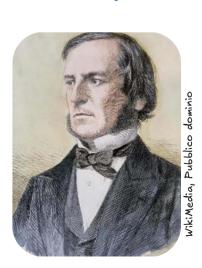
Premesse = Conclusione

Non importa che le premesse siano vere o false!

Ma non è possibile che le premesse siano vere e la conclusione falsa!!

- Bivalenza: Ogni enunciato o è vero, oppure è falso (non ci sono altri valori!)
- Non-contraddizione: Nessun enunciato è vero e falso
- Verofunzionalità: La verità/falsità di ogni enunciato dipende solo dalla verità/falsità delle sue componenti

Porte logiche


Ogni enunciato o è vero, oppure è falso (non ci sono altri valori!)

ddizione: Nessun enunciato è vero e falso

alità: La verità/falsità di ogni enunciato dipende solo dalla verità/falsità delle sue componenti

- La negazione (~A) di un enunciato A è falsa quando A è vero (e viceversa!)
- La disgiunzione (A o B) di due enunciati A,B è vera quando almeno uno degli enunciati A,B è vero
- La congiunzione (A & B) di due enunciati A,B è vera quando entrambi gli enunciati A,B sono veri
- L'implicazione $(A \rightarrow B)$ di due enunciati A,B è vera quando non è possibile che A sia vero e B sia falso

Porte logiche

Bivalenza: Ogni enunciato o è vero, oppure è falso (non ci sono altri valori!)

Non-contraddizione: Nessun enunciato è vero e falso

Verofunzionalità: La verità/falsità di ogni enunciato dipende solo dalla verità/falsità delle sue componenti

- La negazione (~A) di un enunciato A è falsa quando A è vero (e viceversa!)

- La disgiunzione $(A \circ B)$ di due enunciati A,B è vera quando almeno uno degli enunciati A,B è vero

– La congiunzione (A & B) di due enunciati A_iB è vera quando entrambi gli enunciati A_iB sono veri

- L'implicazione $(A \rightarrow B)$ di due enunciati A,B è vera quando non è possibile che A sia vero e B sia falso

				ı			
	~A		В	A o B	 A	В	4 & B
1	0	1	1	1	1	1 0 1	1
0	1	1	0	1	1	0	0
			1		0	1	0
		0	0	0	0	0	0

1	В	A -> B
		<u> </u>
1	1	1
1	0	0
0	1	1 ???
0	0	1

	В	~A	A & ~A	(A & ~A) -> B
1	1	0	0	1
1	0	0	0	1
0	1	1	0	1
0	0	1	0	1

I vincoli classici ci impongono quindi che

A,~A indipendentemente dal contenuto di A,B!

Ci sono mo(n) di e mo(n) di!

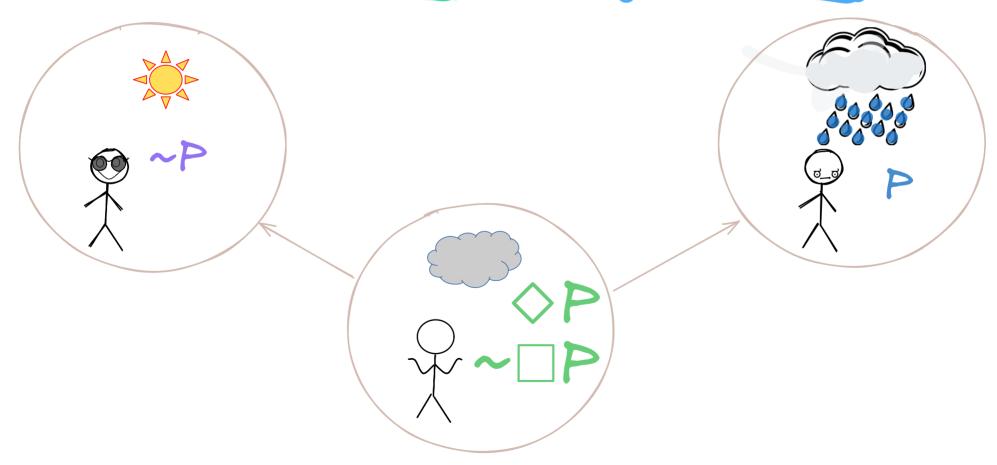
Violando il principio di verofunzionalità, possiamo associare ad ogni situazione s un insieme di alternative, cioè:

situazioni che sono possibili rispetto ad s

Se oggi sono a Genova,

- è possibile che domani sia a Barcellona

- non è possibile che domani sia su Alpha-Centauri



Wiki Madia Pubblica damini

La logica modale

«È possibile che piova» è un enunciato vero in una data situazione se l'enunciato «Piove» è vero in almeno una delle alternative alla data situazione

«È necessario che piova» è un enunciato vero in una data situazione se l'enunciato «Piove» è vero in tutte le alternative alla data situazione

Logiche modali

La logica modale

Ci sono mo(n)di e mo(n)di!

Violando il principio di verofunzionalità, possiamo associare ad ogni situazione s un insieme di alternative, cioè:

situazioni che sono possibili rispetto ad s

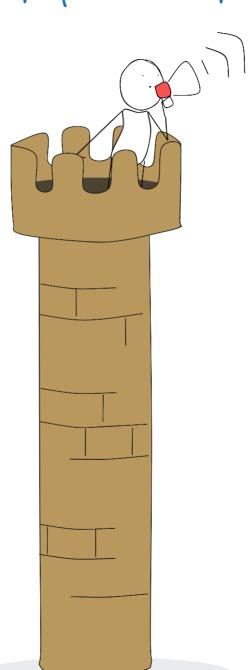
– è possibile che domani sia a Barcellona non è possibile che domani sia su Alpha-Centauri

21 - Rilosofia - Rilosofia - Informatica - Linguistica - Psicologia - ...

Logiche dinamiche, epistemiche, deontiche

Che cos'è la logica??

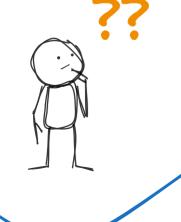
Frossa così, le sarehke;
così, le patriche essere;
che non è così, altere ron la e.


na definizione (ed un esempio)

Inferenze (il)logiche

1. Se mangio qualcosa, allora l'ho vista 2. Ho visto la focaccia Quindi: Mangio la focaccia

> Inferenze logiche Modus ponens



Implicazione modale $A \rightarrow B := \sim \diamondsuit (A \& \sim B)$:= □~(A & ~B)

Implicazione modale

$$-> B := \sim \diamondsuit (A \& \sim B)$$
$$:= \Box \sim (A \& \sim B)$$

Inferenza monotòna

$$A \rightarrow B \neq A \& C \rightarrow B$$

> B :=
$$\sim \diamondsuit(A \& \sim B)$$

:= $\square \sim (A \& \sim B)$

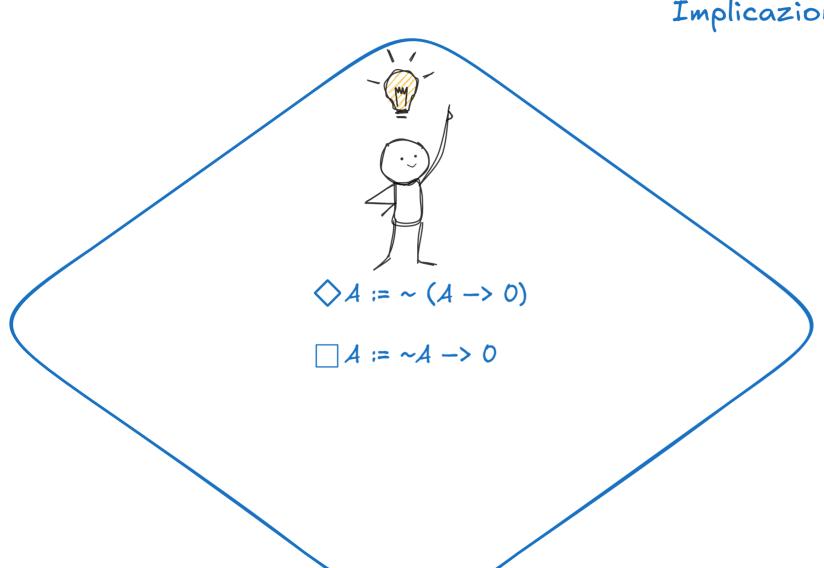
Inferenza monotòna

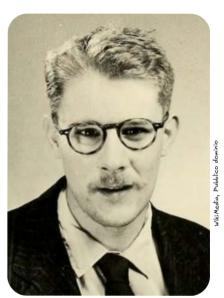
$$A \rightarrow B \neq A \& C \rightarrow B$$

«Se la particella ha spin semintero, allora è un fermione» := $\sim \diamondsuit$ (Spin_semint & \sim Ferm) «Se la particella ha spin semintero e non ha massa, allora è un fermione» := $\sim \diamondsuit$ (Spin_semint & No_mas & \sim Ferm)

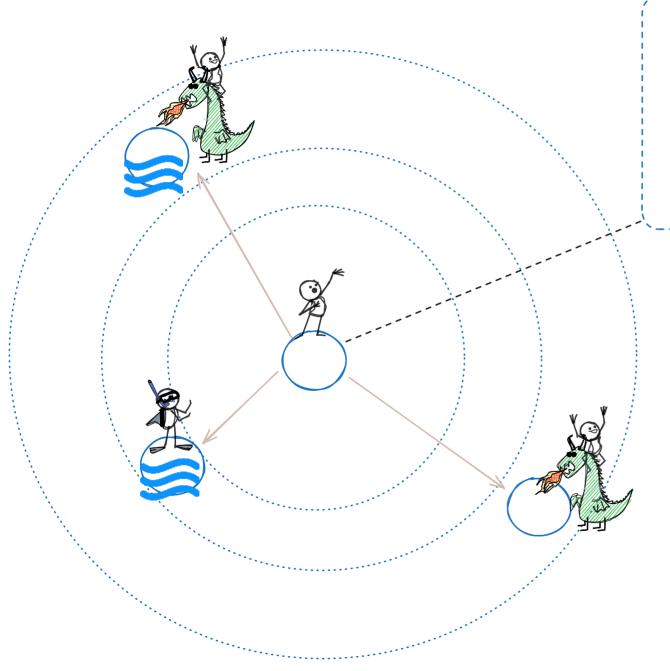
I poeti

«S'i' fosse foco, arderei 'l mondo; s'i' fosse vento, lo tempesterei; s'i' fosse acqua, i' l'annegherei; s'i' fosse Dio, mandereil' en profondo»

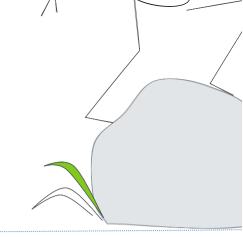

Fabrizio De André, Se fossi foco, 1968 (da un sonetto di Cecco Angiolieri, 1260-1312) «Se fossi più gatto, se fossi un po' più vagabondo, vedrei in questo sole, vedrei dentro l'alba e nel mondo...»

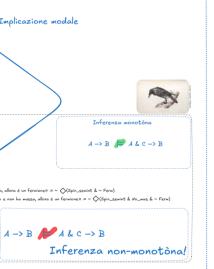


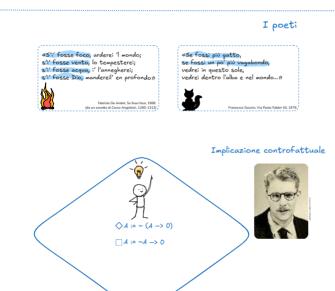
Francesco Guccini, Via Paolo Fabbri 43, 1976

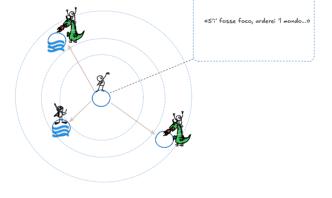

Implicazione controfatt

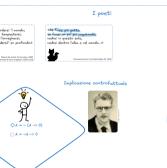
Implicazione controfattuale

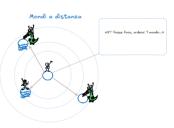



Mondi a distanza

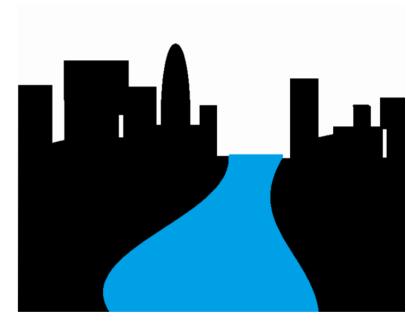

«S'i' fosse foco, arderei 'l mondo...»






Mondi a distanza

Condizionali & Controfattuali



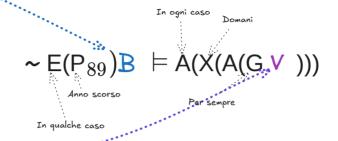
Condizionali & Controfattuali

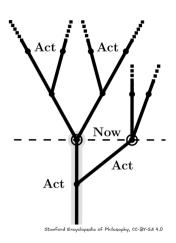
Logiche non-monotone e della revisione

La logica temporale

«Se nell'autunno del '36 Barcellona non fosse caduta, da domani avremmo vissuto tempi migliori»

WikiMedia, Pubblico dominio

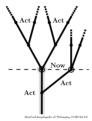

La logica temporale


«Se nell'autunno del '36 Barcellona non fosse caduta, da domani avremmo vissuto tempi migliori»

Modelli ramificati del tempo

Riprese dal set di "Interstellar" © Warner Bros 2014

Modelli ramificati del tempo


La logica temporale

«Se nell'autunno del '36 Barcellona non fosse caduta, da domani avremmo vissuto tempi migliori»

Logiche temporali

Tipi paradossali

«Io non vorrei mai appartenere a nessun club che contasse tra i suoi membri uno come me.»

Paradosso di Russell

È un membro di Immagine da "La bella e la bestia", ©Disney 1995 Immagini da Dominio Pubblico WikiMedia


Paradosso di Russell

Paradosso di Russell

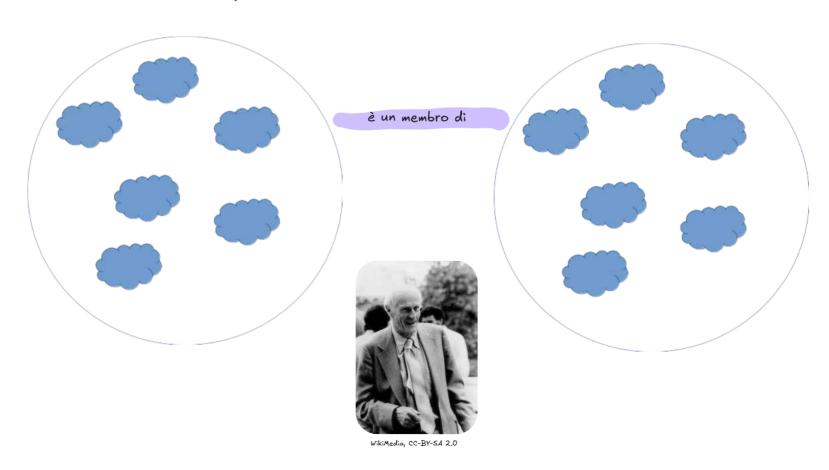
Paradosso di Russell

Paradosso di Russell

«L'insieme R di tutti gli insiemi che non sono membri di se stessi è membro di R, oppure non lo è ???»

Se Rèmembro di R, allora R non è membro di R. Ma se R non è membro di R, allora Rèmembro di R!

Bivalenza: Ogni enunciato o è vero, oppure è falso (non ci sono altri valori!)


Non-contraddizione: Nessun enunciato è vero e falso

Verofunzionalità: La verità/falsità di ogni enunciato dipeni

Logica di Kleene

Violando il principio di bivalenza, possiamo associare ad ogni enunciato A più valori di verità, ad esempio:

A può essere vero (1), falso (0), o indefinito (#)

Logica dei paradossi

Violando il principio non-contraddizione, possiamo dire che ogni enunciato A può essere:

vero (1), falso (0), o entrambi

R non è un membro di R

WikiMedia, Pubblico Dominio

WikiMedia, CC-BY-SA 2.0

WikiMedia, CC-BY-SA 3.0

Premesse = Conclusione

Non importa che le premesse siano vere o false!

Ma non è possibile che le premesse siano vere e la conclusione falsa!!

Solo che adesso

A,~A

 \mathbb{B}

Logiche polivalenti, paraconsistenti, dialeteiche

Logica dei paradossi

Violando il principio non-contraddizione, possiamo dire che ogni enunciato 4 può essere:

vero (1), falso (0), o entrambi

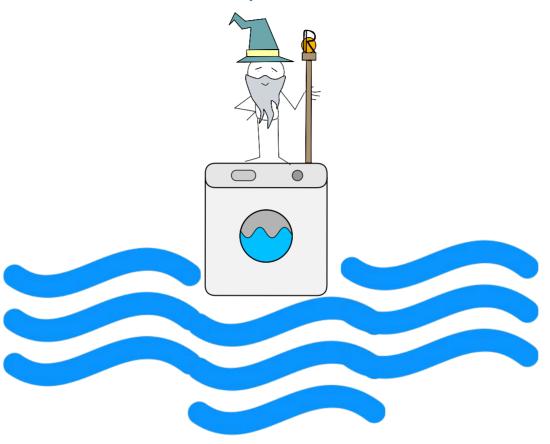
R non è un membro di R

Premesse Conclusione

Non importa che le premesse siano vere o false!

Ma non è possibile che le premesse siano vere e la conclusione falsa!!

Solo che adesso


Logica di Kleene

Violando il principio di bivalenza, possiamo associare ad ogni enunciato A più valori di verità, ad esempio:

A può essere vero (1), falso (0), o indefinito (#)

Logiche sfumate e a infiniti valori

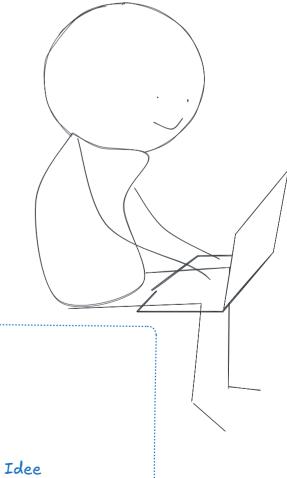
Logiche polivalenti, paraconsistenti, dialeteiche

Piccolo Atlante delle Logiche Non-Class

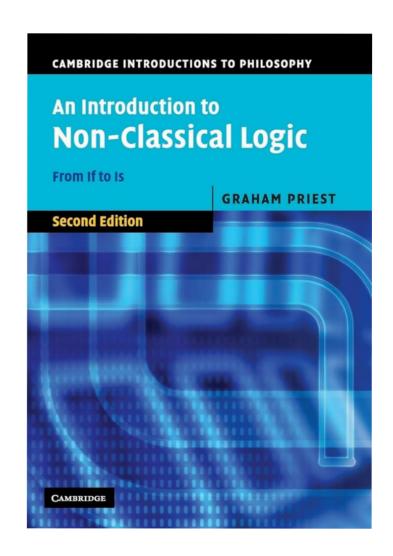
Che cos'è la looica?

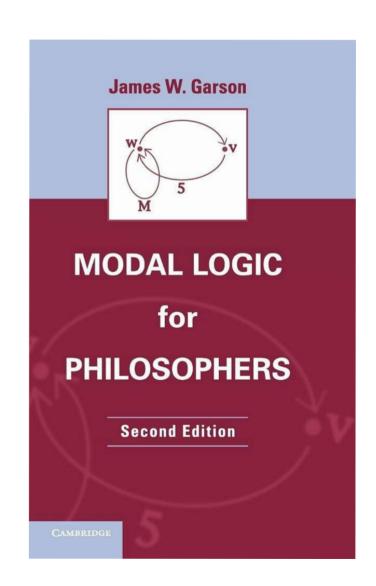
Tufanana (Marca

Inferenze logiche

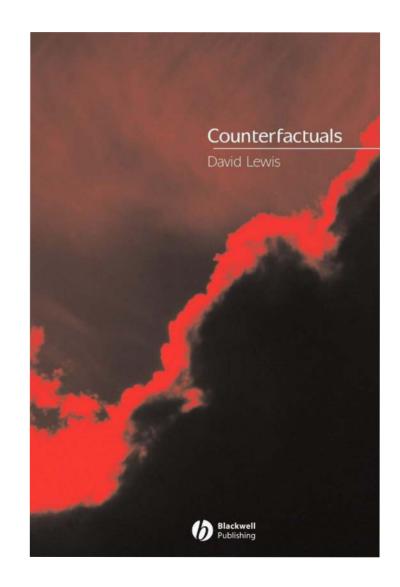

Uno splendido Modus Por

E poi se la gente sa - e la gente lo sa - che sai sucnare, Successe ti tocca per tutta la sita a et inica lacciarii accoltare



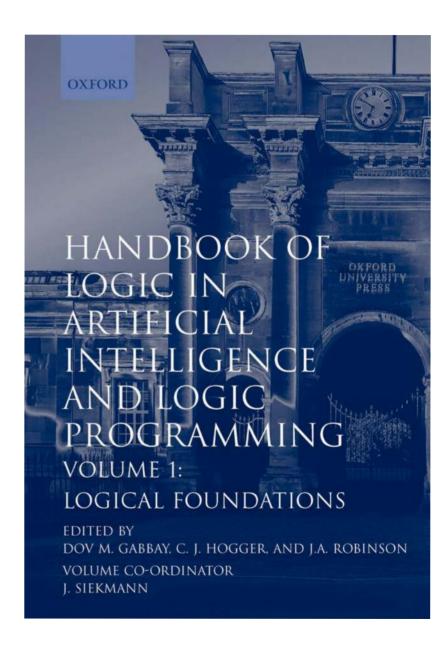

Per approfondire

Graham Priest, An Introduction to Non-Classical Logic (2nd edition), CUP 2008


James W. Garson, Modal Logic for Philosophers (2nd edition), CUP 2013

Valentin Goranko & Antje Rumberg, Temporal Logic The Stanford Encyclopedia of Philosophy Summer 2025 Edition

David Lewis Counterfactuals Blackwell Publishing 1973


Handbook of Philosophical Logic 18

Dov M. Gabbay Franz Guenthner *Editors*

Handbook of Philosophical Logic

Volume 18

Grazie per la vostra attenzione!

COSIMO PERINI BROGI

Assistant Professor Research Unit SysMA Systems Security, Modelling and Analysis

Piazza S. Francesco, 19 - 55100 Lucca (Italy)

cosimo.perinibrogi@imtlucca.it | www.logicosimo.gitlab.io

Rielaborazione da "Alice nel Paese delle Meraviglie", @Disney 1951

